

IOSUD - Universitatea Politehnica Timişoara

Şcoala Doctorală de Studii Inginereşti

LOCAL PROCESSING SYSTEMS FOR MACHINE LEARNING ALGORITHMS

Ph.D. Thesis – Abstract

for obtaining the scientific title of doctor at

Politehnica University Timișoara

in the doctoral field Electronic Engineering, Telecommunications and Information
Technology

Author Eng. Ioan LUCAN-ORĂȘAN

scientific coordinator Prof. Univ. Dr. Habil. Eng. Cătălin Daniel CĂLEANU

September 2024

Artificial intelligence is an extensive field of research developed in recent years, and
today it is increasingly present for different real-world applications. This means that the field
has reached a sufficiently advanced stage that it has moved from the level of research to real
use cases, in a safe manner. As artificial intelligence algorithms have reached an acceptable
level of maturity, the focus has also begun to exist on hardware devices with their execution
capabilities. The PhD thesis presents the results of using basic technical solutions for deep
neural network compression in order to obtain a neural network model compatible with
embedded local systems using ARM Cortex-M CPU based microcontrollers.

The general objective of the thesis is represented by the compression of convolutional
neural networks for automotive applications, such as for example the estimation of the driver's
eye gaze. This is of particular importance due to the large size of state-of-the-art networks,
which are usually run on high-performance PC workstations or remote servers. Such a solution
is not suitable for applications that need to run in real-time, with low power consumption and
where remote data transmission must be avoided for privacy and security reasons. Therefore,
neural network compression plays an important role, with the aim of reducing the size of a
model so that it is possible to execute inference on local real-time processing devices with low
power consumption.

The fundamental contribution of this thesis is the study, description and implementation
of the main methods of convolutional neural networks compression together with their
validation using different reporting metrics on 32-bit STM32 series microcontrollers with ARM
Cortex-M CPUs. In particular, the knowledge distillation method is extensively explored using
layerwise or widthwise compression, as well as combining them with a detailed presentation of
the results obtained.

The thesis is organized into six chapters and several subchapters, as shown in Figure 1.
The first three chapters refer to the introductory part and general theoretical notions, and the
last three chapters present the experiments with the essential contributions and results of this
work.

Chapter 1 presents the motivation for the elaboration of this paper, the objectives
initially set and a brief high-level presentation of the paper structure.

Chapter 2 aims to introduce in the form of general notions some theoretical information
referring to the most common deep neural network architectures. Subsequently, emphasis is
placed on the complexity of the architectures described in the context of running them on
hardware devices with limited resources, which leads to the need to define deep neural network
architectures for such devices. Consequently, a brief description of these specific architectures

follows along with a series of conclusions.

Chapter 3 presents the possibilities of executing the inference process for deep neural
network models, with the aim of highlighting the advantages and necessity of running inference
on local devices compared to remote computing systems (in the cloud).

Chapter 4 is the first chapter that makes original contributions to this work. It presents
a number of embedded devices suitable for running the deep neural network model inference
process along with the most common software and libraries that help convert models into a
format compatible with embedded devices. Subsequently, a description of the embedded
devices with ARM Cortex-M CPUs used in this paper follows along with their main advantages.
The last part of this chapter comprises a review of 13 papers published in the last 6 years that
use deep neural networks for different applications with ARM Cortex-M CPU-based
microcontrollers. Finally, important results and conclusions are presented on different aspects,
such as: the architectures used, the accuracy obtained, useful hardware characteristics,
challenges and research opportunities.

Chapter 5 presents in the first part the theoretical notions regarding the most common
methods of deep neural networks compression: quantization of parameters after or aware of
training process, weights pruning or the elimination of other structural elements and knowledge
distillation. In addition, the theoretical concepts for optimizing models according to a certain
hardware platform and the automatic search for an optimal architecture are also briefly
presented. The chapter ends with a detailed presentation of the important results and
conclusions obtained from the publication of three scientific papers on post-training
quantization, magnitude-based weights pruning and knowledge distillation.

The last chapter concisely presents the main results and personal contributions of the
author with reference to their dissemination through scientific publications. It concludes with
the presentation of future research directions.

Figure 1. Structure of the paper by chapters and subchapters.

1. DEEP NEURAL NETWORKS

 Convolutional Neural Networks („Convolutional Neural Networks”, CNNs) have
been used since 1980, when a deep neural network called Neocognitron was designed [1]. Using
this hierarchical multilayer architecture, it was possible to recognize visual patterns.

CNNs are a specialized type of neural networks for processing data that have a known,
grid-like topology. Examples of such data can be those in time series, which can be represented
as a 1D grid that reads samples at regular time intervals, or data in an image, which can be
represented as a 2D grid of pixels. Convolutional networks have been tremendously successful
for a lot of practical applications. The name "convolutional neural network" indicates that the
network uses a mathematical operation called convolution. Convolution is a specialized type of
linear operation. Convolutional networks are simply neural networks that use convolution
instead of general matrix multiplication in at least one of their layers [2].

The CNN networks are the most commonly used for the image classification problem,
with a similar operation to how our human brain learns by observing images of different classes.
CNNs learn the contents of an image by applying filters to the image and processing methods
of different filter sizes, quantity, and nonlinear operations. These filters and operations are
applied to multiple layers so that the spatial dimensions of each subsequent layer decrease and
their depths increase during the image transformation process. For each filter applied, the depth
of the learned content increases. This starts with edge detection, followed by pattern
recognition, then a collection of shapes called entities, and so on. This is analogous to the human
brain when it comes to how we understand information [3].

Figure 2 shows the diagram for a typical CNN model and its components. In the first
step, the convolution operation using a number of 64 filters with the size of 5 x 5 is applied to
a grayscale image with the size of 48 x 48 to produce a feature map of number and size 44 x 44
x 64. In the next step, the pooling operation ("Max pooling") with a filter size of 5 x 5 and the
stride set to 2 is applied to the input form 44 x 44 x 64. The result of this operation is an output
shape reduced to the size of 20 x 20 x 64. After the first 2D convolution operation, the ReLu
nonlinear activation function is applied and continues after each operation until the last fully
connected layer.

Figure 2. CNN Architecture [3].

Recurrent Neural Networks („Recurrent Neural Networks”, RNNs) presented in the
paper of Rumelhart et al. [4] since 1986 are a family of neural networks used mainly to detect
patterns in a sequence of data. Just as a convolutional network is a neural network specialized
for processing a grid of X-values, such as an image, a recurrent neural network is a neural
network specialized for processing a sequence of values ����, … , ��. Similarly, just as
convolutional networks can be easily adapted to large images, and some convolutional networks
can process images of varying sizes, recurrent networks can be adapted to much longer
sequences than would be practically possible with other non-specialized networks for sequential
data. In addition, most recurring networks can also process variable-length sequences [2].

A main feature of these networks is the ability to support temporal correlations between

sequential input patterns. This is achievable due to the backward propagation of the output
signal ("feedback"), therefore the output signals depend on their previous values. Figure 3
shows the basic structure of a recurrent neural network.

Figure 3. Recurrent Neural Network.

 The most commonly used types of recurrent neural networks are: („Long short-term

memory”, LSTM) and („Gated recurrent unit”, GRU). The LSTM model was introduced in
1997 by S. Hochreiter and J. Schmidhuber [5] and is characterized by better memory capacity
than previous networks, four times more memory compared to conventional RNNs. GRU
networks are models that allow more information from the past to be saved in order to obtain a
better prediction.

 ResNet architecture was introduced by Kaiminh He et al. in the paper [6] with the
main goal of solving the problem of accuracy degradation for deep neural networks as their
depth increases. This degradation is not a consequence of overfitting, the reason is that after a
certain critical depth, the output loses the input information, so the correlation between input
and output begins to deviate, resulting in a decrease in accuracy.

An ensemble of six models with different depths achieved a validation error in the top
five of 3.57% and won first place at ILSVRC-2015 („ImageNet Large-Scale Visual Recognition

Competition”, ILSVRC). ILSVRC is a competition for the evaluation of object detection
algorithms and image classification from 2010 to 2017. An example of a ResNet model is
shown in Figura 4.

Figura 4. Arhitectura ResNet [3].

2. DEMONSTRATION EXPERIMENT

A. Presentation

In the paper [7] we implemented and evaluated a pre-trained CNN model on the
STM32F779I-EVAL evaluation board without the help of an operating system, using a low-
cost, energy-efficient ARM Cortex-M7 CPU based microcontroller. This is a small model
(Figure 5) consisting of only 3 convolutional layers and was trained using the CIFAR-10 dataset
for the image classification problem into 10 output classes (airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck).

Figure 5. CNN model block diagram [7].

 For the implementation of the application I used a series of peripheral devices:
 Peripheral devices available on the board: camera module and LCD display module

(„Liquid-Crystal Display”, LCD);
 Internal peripheral devices: DCMI („Digital Camera Module Interface”, DCMI) and

the accelerator "Chrom-ART" („Direct Memory Access 2D”, DMA2D).

The camera module is used for image acquisition and the LCD display module for

displaying the image and the result after the inference process. The internal DCMI pheripheral
device is used to ensure by hardware the interface with the camera module, and the DMA2D
"Chrom-ART" accelerator for efficient data transfer.

I have implemented two ANSI C program variants: (1) a program to acquire the input

image from the camera module for processing using the CNN model, and (2) a program to test
the CNN model using the CIFAR-10 dataset for testing.

Using the first variant, I have obtained positive results as shown in Figure 6.

Figure 6. Results obtained for test images aquired using the camera module [7].

 For the second variant of the program, I have used the total number of images for test
(10000), 1000 of images for each predicted class. I have stored them on a microSD card,
organized separately on files with a naming specific for each class. The images are read by the
microcontroller via the corresponding peripheral device for the microSD card interface
("SD/SDIO/MMC"). Subsequently, one image from each class is decoded and tested in turn.
After each test, the result obtained is verified, and the positive results are stored in the internal
memory. Once all images have been tested, the stored results are saved on the microSD card in
".csv" format. Table 1 shows the accuracy achieved for each class.

Table 1. Accuracy results obtained with the CNN model.

Image class

Number of

positive results
(%)

Airplane 657 (65,7)

Automobile 755 (75,5)

Bird 483 (48,3)

Cat 494 (49,4)

Deer 552 (55,2)

Dog 470 (47)

Frog 489 (48,9)

Horse 591 (59,1)

Ship 690 (69)

Truck 761 (76,1)

B. Conclusions

Thanks to advanced technology that integrates digital signal processing (DSP) functions
with hardware support for a wide range of microcontrollers and GPUs, general calculations and
various mathematical functions can be implemented with a small number of CPU instructions
and executed in a significantly shorter time [8], [9].

The ARM Cortex-M CPU microcontroller series provide to the users a set of general

DSP-based functions, with the intention of covering a wide range of requirements for the
implementation of neural networks. The library that contains this set of functions is called
CMSIS-NN [10]. One of the examples used to demonstrate this set of functions is a
convolutional neural network called CIFAR 10, the name being directly related to the dataset
used for training. In the published paper [7], we used the mentioned example in order to run a
convolutional neural network on ST's hardware platform, STM32F779I-EVAL.

The overall accuracy achieved is an average of 59.42% with a runtime of 77ms (about
13 frames per second). Although the accuracy is still far from other high-end models optimized
for embedded devices, for example an accuracy of 92,4% as reported in the paper [11], the size
of the model I used is much smaller (140 KB in the case of 4.3 MB of [11]).

3. POST-TRAINING QUANTIZATION

A. Presentation

Quantization is one of the widely used methods to reduce the size of a model. This is
done by changing the numeric format used to represent the parameters. For example, the
representation format can be changed from a 32-bit floating-point to an integer of only 8 bits or
less. The quantization method is frequently used for the compression of DNNs, in particular to
facilitate the running of inference on low-cost devices such as 32-bit microcontrollers. Even if
there are microcontrollers that have a precision FPU unit, its use is usually avoided to reduce
memory and power consumption [12]. At the same time, however, there are many
microcontrollers without an FPU unit.

In the paper [13] I implemented and evaluated the available post-training quantization
methods using the TensorFlow Lite library: (1) dynamic range quantization (PTDRQ), (2)
integer quantization (PTIQ), (3) float16 quantization (PTFQ), and (4) integer quantization with
int16 activations (PTIQA).

I used three models of convolutional neural networks with different sizes: DenseNet121
(7.0 MB) [14], ResNet50 (23.5 MB) [6] and SE-PreAct-ResNet101 (42.5 MB) [15]. I chose
these models to track the impact on accuracy and compression ratio depending on the size. For
training, the CIFAR-10 dataset is used for the image classification task.

All the above mentioned quantization methods are implemented using a similar
execution flow, as described in the block diagram shown in Figure 7. After the training stage,
the models were saved in the SavedModel format, which is a compatible format for TensorFlow
Lite conversion. After training the model (Step 1), in Step 2 the model with the SavedModel
format is converted to the TensorFlow Lite format to use its size as a reference point for
determining the compression ratio. In Step 3, the model is converted to TensorFlow Lite format
with the quantization option enabled. In Step 4, the compression ratio is calculated as the ratio
of the initial floating-point model size (calculated in Step 2) to the model size after quantization.
In the last step (Step 5) the quantized model is tested using the CIFAR-10 test images, then the
accuracy is calculated.

Figure 7. TensorFlow Lite post-training quantization block diagram [13].

B. Conclusions

Figure 8 shows the compression ratio obtained for each DNN model after applying the
quantization methods. Since the original floating-point models use a 32-bit representation and
quantization is performed on an 8-bit representation, a compression ratio of 4× is expected.
Based on the obtained result, the compression ratio is slightly less than 4×, and using a DNN
model with a small size (e.g. DenseNet121) the ratio tends to be smaller than the others,
especially for dynamic range quantization and integer quantization with 16-bit activations.
Using the 16-bit floating-point quantization method, the compression ratio is 2×. For this
method, the difference between the DNN models is insignificant. In conclusion, the
compression ratio using TensorFlow Lite quantization methods varies slightly depending on
the size of the model.

Figure 8. Compression ratio [13].

Table 2 shows the accuracy achieved after each quantization method, together with the
accuracy before quantization and the total number of parameters. Generally speaking, the
accuracy loss is less than 1%. Therefore, TensorFlow Lite's post-training quantization methods
do not significantly affect the accuracy.

More precisely, using 16-bit floating-point quantization the accuracy loss of is
insignificant, while the model size is reduced by 50%. In some cases, for example DenseNet121
and ResNet50, the accuracy is even improved. Using the PTIQA technique, an increase in
accuracy of 0.01% is achieved for DenseNet121, and with the PTDRQ technique, an increase
in accuracy of 0.02% for ResNet50 is obtained. For SE-PreAct-ResNet101, the lowest accuracy
loss is achieved using the PTFQ technique, followed by PTIQA. Using full integer quantization,
the largest decrease in accuracy is obtained. At the same time, however, the decrease is small.
In the worst case, this is only 0.43% for the DenseNet121 model. A different result is obtained
for SE-PreAct-ResNet101, where the lowest precision was obtained using dynamic range
quantization.

Table 2. Accuracy results before and after quantization.

Features/Model

DNN model

DenseNet121 ResNet50
SE-PreAct-

ResNet101

Model size 7.0 MB 23.5 MB 42.5 MB

Initial accuracy 95.51% 95.13% 94.76%

PTDRQ 95.47% 95.15% 94.63%

PTIQ 95.08% 95.03% 94.69%

PTFQ 95.51% 95.13% 94.75%

PTIQA 95.52% 95.12% 94.72%

In the paper [13], I compared TensorFlow Lite post-training quantization methods using three

different convolutional neural network models. They are classified according to their size as small,
medium, and large. The compression ratio using 8-bit quantization is just under 4×, and using 16-bit
floating-point quantization is 2×. I noticed that for the small size category, the compression ratio tends
to be lower. The degradation of accuracy is almost insignificant; in the worst case, the impact is only
0.43% for the small size category when using the PTIQ method.

4. MAGNITUDE-BASED WEIGHTS PRUNING

A. Presentation

It has been observed that certain structural elements in a network are redundant and their
contribution to the final prediction is small. Based on this observation, it was concluded that
removing these elements is possible to reduce the size of a model, without a significant impact
on accuracy. Such examples can be: removing connections, convolutional layers, or neurons
from fully connected layers. A challenge that comes with this technique is to find a suitable
strategy for identifying the elements that can be pruned with minimal degradation on network
performance.

Unlike quantization, weights pruning is a technique that addresses the problem of over-
parameterization of neural networks. It is known that the size of a neural network is not in
complete correspondence with its performance, therefore, pruning these parameters or
structural elements will result in a smaller size of the network, without affecting the
performance. In addition to other compression methods, it comes as an essential strategy for
reducing the size of the model in the face of the growing need to deploy deep learning models
on resource-constrained devices.

In this direction, my proposal was to use the teacher model from the paper [16] for
implementing magnitude-based weights pruning techniques using the TensorFlow optimization
toolkit. A weight-matrix model that contains multiple values of 0 may be more efficient in terms
of memory footprint and inference time. However, the hardware device used may impose
certain limitations and operations that involve 0 weights not being optimized. With this in mind,
dedicated hardware accelerators have made progress in recent years. The recent study by V
Isaac–Chassande et al. [17] present an overview and design details of the state-of-the-art
dedicated hardware accelerators for random 0-value array computing. The teacher model is
designed for estimating eye gaze in automotive applications. In the context of human-computer
interaction, the field of gaze estimation is very important. Today, driver inattention is still a
major contributor to car collisions. The features of Advanced Driver Assistance Systems
("ADAS") have been specifically designed to mitigate the incidence of car accidents caused by
driver inattention. Estimating the driver's gaze is considered a primary input for algorithms that
can recognize inattention while driving.

TensorFlow Model Optimization Toolkit [18] provides solutions for magnitude-based
weights pruning. Using this pruning method, the weights that have low values are set to zero
with the goal of eliminating unnecessary connections. This is applied during the training process
to allow the neural network to adapt to the involved changes. The training process can only be

fine-tuned and does not have to be performed from scratch. Using a pre-trained model and
applying a fine-tuning step is usually a better option.

The pruning schedule can be configured as constant sparsity schedule or by using a
polynomial decay function. With the first configuration, a target value is defined as the
percentage of weights that will be zero. Using the polynomial decay function, the pruning
schedule is performed according to the polynomial decay function by specifying the initial and
final sparisty.

The purpose of this paper is to evaluate and compare different pruning schedules, such
as constant sparsity schedule and polynomial decay function for magnitude-based weights
pruning using the TensorFlow model optimization toolkit and a custom CNN architecture for
the eye gaze estimation.

B. Conclusions

The constant sparsity schedule is applied using a final sparsity value in the range [0.10
... 0.89] with the increment step of 0.01. This means that the model is subjected to 80 different
configurations and training loops. A training loop is performed for 35 epochs. The schedule
using polynomial decay function has a configuration similar to constant sparsity schedule, with
a final sparsity value in the same range [0.10 ... 0.89] and the step of 0.01, with the same number
of loops and training epochs. The initial sparsity is set to 0.00 for each training loop.

The most positive result was obtained for the second experiment. In this case, the
accuracy degradation is only 1.08%, the final elimination value is 0.75, while the compression
ratio is 8.06.

Table 3 shows the results obtained for the constant sparsity schedule. It comprises the
maximum validation accuracy, the maximum test accuracy, the target sparsity for test accuracy,
and the compression ratio at which we have achieved the maximum test accuracy. The
experiments were conducted three times to calculate an average of the results and highlight the
overall behavior. The average result for validation accuracy is 75.06%, while for test accuracy
it is 73%. Considering the test accuracy of the teacher model of 74.48% [16], we achieved an
average target sparsity value of 0.73 and a compression ratio of 7.74 with a small decrease in
accuracy of only 1.48%.

The most positive result was obtained for the second experiment. In this case, the
accuracy degradation is only 1.08%, the final elimination value is 0.75, while the compression
ratio is 8.06.

Table 3. Results using constant sparsity schedule.

Result

Constant Sparsity

1st 2nd 3rd

Validation

accuracy
75.06% 75.23% 74.89%

Test accuracy 72.47% 73.40% 73.15%

Target sparsity
for test accuracy

0.76 0.75 0.68

Compression

ratio for test
accuracy

8.38 8.06 6.79

Table 4 shows the results obtained for the pruning schedule using the polynomial decay

function. The results are presented using the aforementioned performance indicators. With this
configuration, the average result for validation accuracy is 73.8% and the average for test

accuracy is 72.9%. These results were obtained with an average target sparsity value of 0.57
and a compression ratio of 5.52.

In this case, the most positive result was obtained for the first experiment, with an
accuracy degradation of 0.74%, a final elimination value of 0.59, and a compression ratio of
5.69.

Using constant sparsity schedule, the model weights are significantly reduced down to
0.76 target sparsity, achieving a maximum compression ratio of 8.38 with a degradation in test
accuracy of only 1-2%. With the pruning schedule using the polynomial decay function, the
target sparsity value obtained is maximum of 0.62 with a compression ratio of 6, lower than in
the case of constant sparsity schedule, while the accuracy degradation is similar to constant
sparsity. Based on the above results, it can be concluded that in order to achieve high target
sparsity, constant sparsity schedule is a more suitable choice compared to the polynomial decay
function.

Table 4. Results using polynomial decay function pruning schedule.

Result

Polynomial Decay Function

1st 2nd 3rd

Validation
accuracy

73.79% 73.53% 74.21%

Test accuracy 73.74% 72.47% 72.47%

Target sparsity

for test accuracy
0.59 0.5 0.62

Compression
ratio for test

accuracy

5.69 4.88 6

In this paper we have implemented and evaluated the following magnitude-based

weights pruning schedules: constant sparsity schedule and polynomial decay function pruning
schedule with the implementation performed using TensorFlow model optimization toolset.
Using constant sparsity schedule, a compression ratio of up to 8.06 with a target sparsity value
of 0.75 can be achieved, while the accuracy degradation is only 1.08%. Using polynomial decay
function pruning schedule, the result is less satisfactory in terms of compression ratio, which is
up to 5.69 with a final value of 0.59, while the accuracy degradation is 0.74%. Therefore,
constant sparsity schedule is a better choice compared to the polynomial decay function.

5. KNOWLEDGE DISTILLATION

A. Presentation

In the paper [16] I set out to address the problem of eye gaze estimatimation with
applicability in the automotive field. My proposal uses a concept of knowledge distillation
applied to a custom CNN model architecture, with the role of a teacher model. The field of eye
gaze estimation has significant importance in the context of human-computer interaction and
for multiple applications in various fields, such as the automotive industry, market research and
medical. Currently, drivers' inattention continues to be an essential factor that in most situations
leads to car collisions. Implementation of advanced driver assistance systems („Advanced

Driver-Assistance Systems”, ADAS) was proposed as a potential solution to mitigate the
incidence of car accidents caused by driver inattention. The driver's gaze can be an indicator
for detecting fatigue or inattention while driving. In such situations, it is possible to give

warnings to the driver and, if necessary, decide on appropriate measures to avoid a collision
[19].

Compressing a DNN model is a common practice for achieving a small network for
low-cost and resource-limited hardware devices. Knowledge distillation is a particular method
that involves training to transfer knowledge from a larger-sized network to another network that
is significantly smaller in size. Bucilua et al. [20] successfully demonstrated for the first time
that the knowledge gained from a large set of models can be transferred to a single and smaller
model. The purpose of using this method is to train the student network so that it replicates the
performance of the teacher network, but with a smaller size, respectively fewer memory usage
and computational resources.

The process of implementing the knowledge distillation algorithm involves the
following main steps: (1) defining the teacher and student networks, (2) training the teacher
network and (3) training the student network with knowledge transfer from the teacher network.
These three steps are briefly outlined below.

1) Defining teacher and student networks

The teacher network can be a standard high-performance model with a large number of
parameters (e.g. ResNet, DenseNet or EfficientNet), while the student network can also be a
standard model but with a smaller number of parameters. Depending on the task, a custom
architecture of teacher or student networks can also be used.

2) Teacher Network Training

The teacher network is trained using a standard training procedure, with the aim of
achieving the best accuracy.

3) Training the student network with knowledge transfer from the teacher network

At this stage, the knowledge distillation algorithm is used. Forward propagation is
performed for the teacher and student networks, while backward propagation applies only to
the student network. The primary loss function is defined using two distinct loss functions: the
student loss function and the distillation loss function.

The model's knowledge are classified into three different types: response-based
knowledge, feature-based knowledge, and relationship-based knowledge [21]. Response-based
knowledge focuses on the final output layer, where the student model will learn the predictions
of the teacher model. Feature-based knowledge uses the knowledge from the intermediate
layers of the teacher model to train the student model. Relationship-based knowledge focuses
on the correlation between feature maps, graphs, similarity matrix, feature embeddings, or
probabilistic distributions. In this thesis, we used response-based knowledge because it showed
the best results for different tasks and applications.

The block diagram for the knowledge distillation algorithm is shown in Figure 9.

Figure 9. Block diagram for knowledge distillation [16].

The transfer of knowledge from the teacher model to the student one is achieved by

minimizing the main loss function in order to produce the same probabilities as those produced
by the teacher model. More specifically, this refers to the output of the "Softmax" function
applied to predictions before they are normalized. For these predictions of the teacher model,
the name "logits" is usually used. Most commonly, the correct class of the probability
distribution has a higher level compared to the other class probabilities that are close to zero.
Therefore, the result provided by this probability distribution is very similar to the grounds truth
labels of the dataset. Regarding this behavior, Hinton et al. [22] introduced the softmax
parameter "temperature". By denoting this parameter with T, the probability of class �	 in
"logit"
	 is calculated with the equation (5.1).

�	 =
�� �
	/��

∑ �� �
�/���

(5.1)

When the parameter T is set to the value 1, the equation becomes a standard "Softmax"
function. When T has a value greater than 1, the probability distribution will provide more
information about the classes for which the teacher model reported a prediction close to the
correct class. This is the knowledge of the teacher model that is transferred to the student model
using the distillation algorithm. When the distillation loss function is calculated using the "soft"
labels, the same value of T is used to calculate the "softmax" function on the "logits" of the
student model.

Model training with knowledge distillation has been observed to be a benefit using the
ground truth labels of the dataset as well. Therefore, the second loss function is calculated with
the parameter T set to the value 1. This is a standard loss function called the student model loss
function. By noting the distillation loss function with �� (5.2) and the loss function of the
student model with �� (5.3), the main loss function is calculated using the equation (5.4):

�� = ����
�; � = ��, ��
�; � = ��� (5.2)

�� = ���, ��
�; � = 1�� (5.3)

���; �� = � ∗ �� + " ∗ �� (5.4)

where H is the cross-entropy loss function, σ is the "Softmax" function, and
� ,
� are the

"logits" of the teacher and student models, y is the ground truth label, x is the input, W are the
parameters of the student model, and α, β are coefficients.

 The teacher model is a small custom CNN model with only 5 convolutional layers. It is
used as a base model for student models. To get a smaller student model, we applied two
different methods: layerwise compression and widthwise compression. Layerwise compression
involves reducing the number of convolutional layers, while widthwise compression stands for
reducing the number of filters. The optimal student model is considered to be the one that has
the smallest size, but at the same time has not suffered a significant loss of accuracy. To increase
the search space in finding the most optimal student model, various combinations of layerwise
and widthwise compression are also considered.

For layerwise compression, I have defined the following student models:

 Student_cut5, where I gave up the last convolutional layer;

 Student_cut4, where I gave up the last two convolutional layers;

For widthwise compression, I have defined the following student models:

 Student_width10, a model with 10% fewer filters;

 Student_width30, a model with 30% fewer filters;

 Student_width50, a model with 50% fewer filters.

Layerwise and widthwise compression combinations are defined by applying widthwise
compression to the student models resulting from layerwise compression. I used the name
Student_cutX&widthY, where X is the layerwise compression model and Y is the widthwise
compression model. In total, 11 student models were obtained with the aim of finding the
optimal configuration.

B. Conclusions

• Results using the knowledge distillation algorithm on the PC station

Depending on the user's requirements, the compression of a model can be for several
types of outcomes: (1) reducing the size of the model without an impact on performance or even
improving accuracy if possible, (2) reducing the model size and inference time, while
supporting a small degradation in accuracy, and (3) significantly reducing the model size and
inference time, but keeping accuracy within acceptable limits.

Based on the results obtained, the following models can be used for the first case:
Student_cut5, Student_width10 and Student_cut5&width10. In the case of these models, the
accuracy is higher than that of the teacher model. The highest compression ratio and reduction
of inference time are achieved with the Student_cut5&width10 model. However, if the user's
requirement is not to achieve maximum accuracy, then the Student_cut5&width10 model is the
most suitable solution.

For the second case, with the following models we achieved a decrease in accuracy of
less than 1% compared to the teacher model: Student_cut4, Student_width30 and
Student_cut5&width30. The highest compression ratio and inference time reduction are
achieved for the Student_cut5&width30 model, which is best suited for this category.

When model size and inference time reduction are considered the most important
aspects, the following models are best suited: Student_width50, Student_cut5&width50,
Student_cut4&width10, Student_cut4&width30, and Student_cut4&width50. The highest
compression ratio and reduction of inference time was achieved with the
Student_cut4&width50 model, but in this case the accuracy is only 68.29%. The model in this
category that has the highest accuracy is Student_cut4&width10. Its accuracy is close to that of
the teacher model, and the compression ratio is 3.24.

Based on the results presented above, the following conclusions can be summarized:

 Using the knowledge distillation algorithm, accuracy can be improved by up to 9.5%

compared to using a conventional training procedure. This can be achieved using the

model obtained from the layer and width compression method: Student_cut4&width30;

 The knowledge distillation algorithm is more efficient when the coefficient α is set to 0

or 0.5 and T is set to a higher value, such as 14. Therefore, the efficiency is higher when

the main loss function (5.4) is based only on the distillation loss function �� or when

the student loss function �� and distillation loss function �� have the same weight;

 The combined use of layerwise and widthwise compression is more effective than using

them independently;

 The inference time is reduced more using widthwise compression compared to

layerwise compression. The combination of these leads to an improvement, but not

significantly.

• Results on the STM32H747I-DISCO hardware platform

The purpose of validation on the STM32H747I-DISCO platform is to demonstrate that
the resulting accuracy is similar to that obtained on the PC station, given that no compression
is applied that could introduce a reduction in accuracy. The small difference that is noticeable
may be a consequence of the fact that the accuracy is calculated using different instruments.

Regarding the use of RAM and ROM, the following considerations can be briefly
presented depending on the layerwise or widthwise compression: (1) RAM usage is lower using
widthwise compression (in the case of layerwise compression, the difference is not significant),
(2) ROM usage is gradually lower as the size of the model decreases (in this case, there is no
visible difference between layerwise and widthwise compression, and (3) the combination of
layerwise compression and widthwise compression is more efficient because the RAM required
is also reduced.

MACC complexity is higher when using layerwise compression. This is significantly
reduced when using widthwise compression. The most effective choice is also to use a
combination of layerwise and widthwise compression.

The inference time follows a distribution similar to that presented in the results obtained
on the PC station. In conclusion, inference time is reduced more using widthwise compression,
and the combination with layerwise compression leads to improvements. In the case of the
Student_cut4&width30 model, the inference time is 870.5 ms, and the accuracy is 73.66%. This
denotes that one frame per second can be achieved with an accuracy close to the maximum
value. This inference time can be supported for practical applications, which allows the
implementation of a real-time gaze detection system on a low-cost and energy-efficient
hardware platform.

Nowadays, deep neural networks and their associated paradigm of deep learning are
ubiquitous in the automotive field. Published paper [16] refers to an optimization procedure that
aims to implement a neural network model for the eye gaze estimation problem on low-cost
hardware. My proposal uses a concept of knowledge distillation applied to a custom CNN
architecture, called the teacher model. Based on this, several CNN student models are derived
using layerwise and widthwise compression techniques. Subsequently, they are evaluated in
terms of different performance metrics such as, neural network size and inference time. We
have proposed the analyzed compression methods that are more suitable and can meet specific
user requirements, such as model size, accuracy, and inference time. Finally, we evaluated the
student models on the STM32H747IDISCO embedded device in terms of accuracy, memory
usage, MACC complexity, and inference time. Using the knowledge distillation algorithm,
accuracy can be improved by up to 9.5% compared to the conventional training procedure. A
compression ratio of up to 8.86 is achieved with a decrease of less than 10% in accuracy. The
inference time using width compression is reduced more. Combining layer and width
compression is more efficient and a good compromise between model size, accuracy, and
inference time. The results of validation on STM32 hardware showed that in order to reduce
the use of RAM and ROM, the combination of layer and width compression is the optimal
solution. This solution is also the right choice for optimizing MACC complexity and inference
time simultaneously. However, I was able to identify some limitations of the methodology used,
as it only transfers knowledge related to the results of the initial model and does not capture the
internal representations learned by the teacher model. Also, the student model can learn less

from the teacher model variants where there is an important architectural gap compared to the
student model.

6. CONCLUSIONS AND PERSONAL CONTRIBUTIONS

Deep neural networks have reached a very advanced stage in recent years, being used

more and more frequently for different applications and devices in people's lives. Obviously,
artificial intelligence will be a field that profoundly marks the technological progress of the
current century. The use of neural network models from very isolated applications such as
smartwatches to applications that solve as many requirements as possible with a single model
has led to the need for a very large diversity of models. At the same time, it is known that the
high-end models with which the best performance has been achieved are very expensive in
terms of occupied memory, computing requirements and power consumption. For this reason,
in the relatively recent period and today the level of research has reached a point where the
focus is on designing smaller models with satisfactory performance and that are suitable for the
class of isolated applications (mentioned above). Meanwhile, to build on the already existing
progress with large neural networks, the compression of pre-trained neural networks is another
parallel research point. These directions are justified by the large number of billions of local
devices that require artificial intelligence algorithms [23]. Therefore, I have noted the relevance
of a research at the level of doctoral studies in this direction, having as its main purpose the
compression of deep neural networks.

The main contribution of this thesis is the study, description and implementation of deep
neural network compression algorithms such as quantization, knowledge distillation and
magnitude-based weight pruning using convolutional neural networks of different sizes and a
specific model for the driver's eye gaze detection application. The implementation was carried
out using different configurations in order to present in a detailed way the results regarding the
accuracy, the compression ratio obtained and the inference time with a focus on the right
configuration according to the system requirements.

During this doctoral thesis, I studied more than 160 bibliographic titles, I elaborated two
articles published in ISI journals Q2 („IEEE Access”), Q3 („MDPI Electronics”) and indexed

„Web of Science”; an indexed conference paper „ISI Proceedings” and „Web of Science”; an
indexed conference paper BDI and two conference papers that are currently being drafted. For
all these works I contributed as first author, except for the last conference paper that is being
written and where I will be as second author. I would like to point out that currently the papers
have a total of 31 citations according to the Google Scholar report. In the next section I have
presented the personal contributions at the level of detail for each scientific paper.

The personal contributions present in the journal article ISI Q3 („MDPI Electronics”)

[24] are:

• I have presented some low-cost (less than $10 for a microcontroller) and representative
hardware devices along with the libraries or supporting tools that help implement
machine learning algorithms on them;

• I have summarized 13 papers in recent years where microcontrollers with ARM Cortex-
M CPUs have been used to run machine learning algorithms. I aimed to point out the
following main aspects: the architecture of the model, the hardware characteristics (such
as: available memory footprint, CPU architecture and operating frequency), the tools
and support libraries used together with the results obtained in terms of: accuracy,
inference time and power consumption;

• I have described in detail the results obtained with a focus on the cases where the best

results have been obtained. I have also discussed the main reasons that are in many cases
an impediment to achieving the desired results;

• I have highlighted research challenges and opportunities that highlight important
aspects and pose a challenge for future progress in this field.

The personal contributions present in the journal article ISI Q2 („IEEE Access”) [16]

are:

• I have defined and trained a custom CNN architecture to classify the eye gaze
estimation, with a size of 6.14 MB and an accuracy of 77.48%;

• I applied the knowledge distillation methodology with different configurations to train
multiple student models defined using layerwise and widthwise compression methods.
For the teacher model I used the custom CNN architecture;

• I presented an evaluation of the experimental results in order to identify the most
appropriate compression method according to the user's requirements, such as: model
size, desired accuracy and expected time for an inference;

• I validated the student models using the AI validation interface of the X-CUBE-AI
extension package on the STM32H747I-DISCO hardware device. To this end, I have
presented details on the accuracy achieved, memory usage, MACC complexity, and
inference time.

Personal contributions present in the indexed conference paper „ISI Proceedings” and

„Web of Science” [7] are:

• I have converted a CNN network model from the generic Caffe format to a format
compatible with the STM32 microcontroller;

• I have implemented the interfaces between the peripheral modules (such as LCD display
module and camera module) and the CNN model, so that together they form a functional
system;

• I validated the CNN model directly on the microcontroller in real time using the camera
module and tested the overall behavior of the model using the test images of the CIFAR
10 dataset.

Personal contributions present in the indexed conference paper BDI [13] are:

• I have compared the compression ratio that is obtained using 8-bit integer quantization
and 16-bit floating-point quantization using four different PTQ techniques;

• I analyzed the compression ratio according to the size of the DNN model, using three
different models;

• I have highlighted the influence of PTQ techniques on the accuracy of the models.

The personal contributions present in the paper aimed on magnitude-based weights
pruning (work in progress) are:

• I have applied the technique magnitude-based weight pruning to a custom CNN model

trained in order to classify the eye gaze estimation;
• I have compared the constant sparsity schedule and the polynomial decay function

with respect to the compression ratio, the target sparsity, the test and validation
accuracy;

• I have presented an evaluation of the experimental results in order to identify the

appropriate schedule for magnitude-based weights pruning in order to obtain a high
degree of elimination and a high compression ratio, without a significant loss of
accuracy.

Bibliography

[1] K. Fukushima, "Neocognitron: A hierarchical neural network capable of visual pattern
recognition," Neural Networks, vol. 1, p. 119–130, 1988.

[2] I. Goodfellow, Y. Bengio and A. Courville, Deep learning, Cambridge, MA: MIT Press,
2016.

[3] K. Kar, Mastering Computer Vision with TensorFlow 2.x, May, 2020.

[4] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning representations by back-
propagating errors," Nature, vol. 323, p. 533–536, 1986.

[5] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Comput., vol. 9,
p. 1735–1780, 1997.

[6] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition,"
in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,

Las Vegas, NV, USA, June 27-30, 2016, 2016.

[7] I. L. Orășan and C. D. Căleanu, "ARM Embedded Low Cost Solution for Implementing
Deep Learning Paradigms," Timisoara, 2020.

[8] A.-A. Erofei, C.-F. Druţa and C. D. Căleanu, "Embedded Solutions for Deep Neural
Networks Implementation," Timisoara, 2018.

[9] R. MIRSU, S. MICUT, C. CALEANU and D. B. MIRSU, "Optimized Simulation
Framework for Spiking Neural Networks using GPU's," vol. 12, pp. 61-68, 2012.

[10] L. Lai, N. Suda and V. Chandra, "CMSIS-NN: Efficient Neural Network Kernels for
Arm Cortex-M CPUs," January 2018.

[11] M. Ayi and M. El-Sharkawy, "RMNv2: Reduced Mobilenet V2 for CIFAR10," Las
Vegas, NV, USA, 2020.

[12] J. Lee, S. Kang, J. Lee, D. Shin, D. Han and H.-J. Yoo, "The Hardware and Algorithm
Co-Design for Energy-Efficient DNN Processor on Edge/Mobile Devices," IEEE Trans.

Circuits Syst., Vols. 67-I, p. 3458–3470, 2020.

[13] I. L. Orăşan, C. Seiculescu and C. D. Caleanu, "Benchmarking TensorFlow Lite
Quantization Algorithms for Deep Neural Networks," Timisoara, 2022.

[14] G. Huang, Z. Liu, L. V. D. Maaten and K. Q. Weinberger, "Densely Connected
Convolutional Networks," Honolulu, 2017.

[15] J. Hu, L. Shen, S. Albanie, G. Sun and E. Wu, "Squeeze-and-Excitation Networks,"
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, p. 2011–2023, 2020.

[16] I. L. Orasan, A.-I. Bublea and C.-D. Caleanu, "Deep Learning-Based Eye Gaze

Estimation for Automotive Applications Using Knowledge Distillation," IEEE Access,

vol. 11, p. 120741–120753, 2023.

[17] V. Isaac–Chassande, A. Evans, Y. Durand and F. Rousseau, "Dedicated Hardware
Accelerators for Processing of Sparse Matrices and Vectors: A Survey," vol. 21, pp. 1-
26, 2024.

[18] TensorFlow, "Model optimization," [Online]. Available:
https://www.tensorflow.org/model_optimization. [Accessed 6 July 2024].

[19] H. U. Draz, M. I. Ali, M. U. G. Khan, M. Ahmad, S. Mahmood and M. A. Javaid, An

Embedded Solution of Gaze Estimation for Driver Assistance using Computer Vision,

2021.

[20] C. Buciluǎ, R. Caruana and A. Niculescu-Mizil, "Model compression," in Proceedings

of the 12th ACM SIGKDD international conference on Knowledge discovery and data

mining, New York, NY, USA, 2006.

[21] J. Gou, B. Yu, S. J. Maybank and D. Tao, "Knowledge Distillation: A Survey," Int. J.

Comput. Vis., vol. 129, p. 1789–1819, 2021.

[22] G. Hinton, O. Vinyals and J. Dean, "Distilling the Knowledge in a Neural Network,"
arXiv e-prints, p. arXiv:1503.02531, March 2015.

[23] L. Ding, "Artificial intelligence solutions running on STM32," [Online]. Available:
https://www.st.com/content/dam/specialevents-assets/electronica-china-2023/st-edge-ai-
english.pdf. [Accessed 7 July 2024].

[24] I. L. Orășan, C. Seiculescu and C. D. Căleanu, "A Brief Review of Deep Neural
Network Implementations for ARM Cortex-M Processor," Electronics, vol. 11, p. 2545,
August 2022.

