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Artificial intelligence is an extensive field of research developed in recent years, and 
today it is increasingly present for different real-world applications. This means that the field 
has reached a sufficiently advanced stage that it has moved from the level of research to real 
use cases, in a safe manner. As artificial intelligence algorithms have reached an acceptable 
level of maturity, the focus has also begun to exist on hardware devices with their execution 
capabilities. The PhD thesis presents the results of using basic technical solutions for deep 
neural network compression in order to obtain a neural network model compatible with 
embedded local systems using ARM Cortex-M CPU based microcontrollers.  

The general objective of the thesis is represented by the compression of convolutional 
neural networks for automotive applications, such as for example the estimation of the driver's 
eye gaze. This is of particular importance due to the large size of state-of-the-art networks, 
which are usually run on high-performance PC workstations or remote servers. Such a solution 
is not suitable for applications that need to run in real-time, with low power consumption and 
where remote data transmission must be avoided for privacy and security reasons. Therefore, 
neural network compression plays an important role, with the aim of reducing the size of a 
model so that it is possible to execute inference on local real-time processing devices with low 
power consumption.  

The fundamental contribution of this thesis is the study, description and implementation 
of the main methods of convolutional neural networks compression together with their 
validation using different reporting metrics on 32-bit STM32 series microcontrollers with ARM 
Cortex-M CPUs. In particular, the knowledge distillation method is extensively explored using 
layerwise or widthwise compression, as well as combining them with a detailed presentation of 
the results obtained. 

The thesis is organized into six chapters and several subchapters, as shown in Figure 1. 
The first three chapters refer to the introductory part and general theoretical notions, and the 
last three chapters present the experiments with the essential contributions and results of this 
work. 

Chapter 1 presents the motivation for the elaboration of this paper, the objectives 
initially set and a brief high-level presentation of the paper structure. 

Chapter 2 aims to introduce in the form of general notions some theoretical information 
referring to the most common deep neural network architectures. Subsequently, emphasis is 
placed on the complexity of the architectures described in the context of running them on 
hardware devices with limited resources, which leads to the need to define deep neural network 
architectures for such devices. Consequently, a brief description of these specific architectures 



follows along with a series of conclusions.  

Chapter 3 presents the possibilities of executing the inference process for deep neural 
network models, with the aim of highlighting the advantages and necessity of running inference 
on local devices compared to remote computing systems (in the cloud). 

Chapter 4 is the first chapter that makes original contributions to this work. It presents 
a number of embedded devices suitable for running the deep neural network model inference 
process along with the most common software and libraries that help convert models into a 
format compatible with embedded devices. Subsequently, a description of the embedded 
devices with ARM Cortex-M CPUs used in this paper follows along with their main advantages. 
The last part of this chapter comprises a review of 13 papers published in the last 6 years that 
use deep neural networks for different applications with ARM Cortex-M CPU-based 
microcontrollers. Finally, important results and conclusions are presented on different aspects, 
such as: the architectures used, the accuracy obtained, useful hardware characteristics, 
challenges and research opportunities. 

Chapter 5 presents in the first part the theoretical notions regarding the most common 
methods of deep neural networks compression: quantization of parameters after or aware of 
training process, weights pruning or the elimination of other structural elements and knowledge 
distillation. In addition, the theoretical concepts for optimizing models according to a certain 
hardware platform and the automatic search for an optimal architecture are also briefly 
presented. The chapter ends with a detailed presentation of the important results and 
conclusions obtained from the publication of three scientific papers on post-training 
quantization, magnitude-based weights pruning and knowledge distillation. 

The last chapter concisely presents the main results and personal contributions of the 
author with reference to their dissemination through scientific publications. It concludes with 
the presentation of future research directions. 



 
Figure 1. Structure of the paper by chapters and subchapters. 



 
1. DEEP NEURAL NETWORKS 

 

 Convolutional Neural Networks („Convolutional Neural Networks”, CNNs) have 
been used since 1980, when a deep neural network called Neocognitron was designed [1]. Using 
this hierarchical multilayer architecture, it was possible to recognize visual patterns. 

CNNs are a specialized type of neural networks for processing data that have a known, 
grid-like topology. Examples of such data can be those in time series, which can be represented 
as a 1D grid that reads samples at regular time intervals, or data in an image, which can be 
represented as a 2D grid of pixels. Convolutional networks have been tremendously successful 
for a lot of practical applications. The name "convolutional neural network" indicates that the 
network uses a mathematical operation called convolution. Convolution is a specialized type of 
linear operation. Convolutional networks are simply neural networks that use convolution 
instead of general matrix multiplication in at least one of their layers [2]. 

The CNN networks are the most commonly used for the image classification problem, 
with a similar operation to how our human brain learns by observing images of different classes. 
CNNs learn the contents of an image by applying filters to the image and processing methods 
of different filter sizes, quantity, and nonlinear operations. These filters and operations are 
applied to multiple layers so that the spatial dimensions of each subsequent layer decrease and 
their depths increase during the image transformation process. For each filter applied, the depth 
of the learned content increases. This starts with edge detection, followed by pattern 
recognition, then a collection of shapes called entities, and so on. This is analogous to the human 
brain when it comes to how we understand information [3]. 

Figure 2 shows the diagram for a typical CNN model and its components. In the first 
step, the convolution operation using a number of 64 filters with the size of 5 x 5 is applied to 
a grayscale image with the size of 48 x 48 to produce a feature map of number and size 44 x 44 
x 64. In the next step, the pooling operation ("Max pooling") with a filter size of 5 x 5 and the 
stride set to 2 is applied to the input form 44 x 44 x 64. The result of this operation is an output 
shape reduced to the size of 20 x 20 x 64. After the first 2D convolution operation, the ReLu 
nonlinear activation function is applied and continues after each operation until the last fully 
connected layer. 

 

 
Figure 2. CNN Architecture [3]. 

  

Recurrent Neural Networks („Recurrent Neural Networks”, RNNs) presented in the 
paper of Rumelhart et al. [4] since 1986 are a family of neural networks used mainly to detect 
patterns in a sequence of data. Just as a convolutional network is a neural network specialized 
for processing a grid of X-values, such as an image, a recurrent neural network is a neural 
network specialized for processing a sequence of values ����, … , ��. Similarly, just as 
convolutional networks can be easily adapted to large images, and some convolutional networks 
can process images of varying sizes, recurrent networks can be adapted to much longer 
sequences than would be practically possible with other non-specialized networks for sequential 
data. In addition, most recurring networks can also process variable-length sequences [2]. 

A main feature of these networks is the ability to support temporal correlations between 



sequential input patterns. This is achievable due to the backward propagation of the output 
signal ("feedback"), therefore the output signals depend on their previous values. Figure 3 
shows the basic structure of a recurrent neural network. 

 
Figure 3. Recurrent Neural Network. 

 The most commonly used types of recurrent neural networks are: („Long short-term 

memory”, LSTM) and („Gated recurrent unit”, GRU). The LSTM model was introduced in 
1997 by S. Hochreiter and J. Schmidhuber [5] and is characterized by better memory capacity 
than previous networks, four times more memory compared to conventional RNNs. GRU 
networks are models that allow more information from the past to be saved in order to obtain a 
better prediction. 
  
 ResNet architecture was introduced by Kaiminh He et al. in the paper [6] with the 
main goal of solving the problem of accuracy degradation for deep neural networks as their 
depth increases. This degradation is not a consequence of overfitting, the reason is that after a 
certain critical depth, the output loses the input information, so the correlation between input 
and output begins to deviate, resulting in a decrease in accuracy. 

An ensemble of six models with different depths achieved a validation error in the top 
five of 3.57% and won first place at ILSVRC-2015 („ImageNet Large-Scale Visual Recognition 

Competition”, ILSVRC). ILSVRC is a competition for the evaluation of object detection 
algorithms and image classification from 2010 to 2017. An example of a ResNet model is 
shown in Figura 4. 

 
Figura 4. Arhitectura ResNet [3]. 

 
 
 
 



2. DEMONSTRATION EXPERIMENT 

 

A. Presentation 

In the paper [7] we implemented and evaluated a pre-trained CNN model on the 
STM32F779I-EVAL evaluation board without the help of an operating system, using a low-
cost, energy-efficient ARM Cortex-M7 CPU based microcontroller. This is a small model 
(Figure 5) consisting of only 3 convolutional layers and was trained using the CIFAR-10 dataset 
for the image classification problem into 10 output classes (airplane, automobile, bird, cat, deer, 
dog, frog, horse, ship, and truck). 

 
Figure 5. CNN model block diagram [7]. 

 For the implementation of the application I used a series of peripheral devices: 
 Peripheral devices available on the board: camera module and LCD display module 

(„Liquid-Crystal Display”, LCD); 
 Internal peripheral devices: DCMI („Digital Camera Module Interface”, DCMI) and 

the accelerator "Chrom-ART" („Direct Memory Access 2D”, DMA2D). 
 
The camera module is used for image acquisition and the LCD display module for 

displaying the image and the result after the inference process. The internal DCMI pheripheral 
device is used to ensure by hardware the interface with the camera module, and the DMA2D 
"Chrom-ART" accelerator for efficient data transfer. 

I have implemented two ANSI C program variants: (1) a program to acquire the input 



image from the camera module for processing using the CNN model, and (2) a program to test 
the CNN model using the CIFAR-10 dataset for testing. 

Using the first variant, I have obtained positive results as shown in Figure 6. 
 

 
Figure 6. Results obtained for test images aquired using the camera module [7]. 

 For the second variant of the program, I have used the total number of images for test 
(10000), 1000 of images for each predicted class. I have stored them on a microSD card, 
organized separately on files with a naming specific for each class. The images are read by the 
microcontroller via the corresponding peripheral device for the microSD card interface 
("SD/SDIO/MMC"). Subsequently, one image from each class is decoded and tested in turn. 
After each test, the result obtained is verified, and the positive results are stored in the internal 
memory. Once all images have been tested, the stored results are saved on the microSD card in 
".csv" format. Table 1 shows the accuracy achieved for each class. 
 

Table 1. Accuracy results obtained with the CNN model. 

Image class 

Number of 

positive results 
(%) 

Airplane 657 (65,7) 

Automobile 755 (75,5) 

Bird 483 (48,3) 

Cat 494 (49,4) 

Deer 552 (55,2) 

Dog 470 (47) 

Frog 489 (48,9) 

Horse 591 (59,1) 

Ship 690 (69) 

Truck 761 (76,1) 

 
B. Conclusions 

Thanks to advanced technology that integrates digital signal processing (DSP) functions 
with hardware support for a wide range of microcontrollers and GPUs, general calculations and 
various mathematical functions can be implemented with a small number of CPU instructions 
and executed in a significantly shorter time [8], [9]. 

The ARM Cortex-M CPU microcontroller series provide to the users a set of general 



DSP-based functions, with the intention of covering a wide range of requirements for the 
implementation of neural networks. The library that contains this set of functions is called 
CMSIS-NN [10]. One of the examples used to demonstrate this set of functions is a 
convolutional neural network called CIFAR 10, the name being directly related to the dataset 
used for training. In the published paper [7], we used the mentioned example in order to run a 
convolutional neural network on ST's hardware platform, STM32F779I-EVAL. 

The overall accuracy achieved is an average of 59.42% with a runtime of 77ms (about 
13 frames per second). Although the accuracy is still far from other high-end models optimized 
for embedded devices, for example an accuracy of 92,4% as reported in the paper [11], the size 
of the model I used is much smaller (140 KB in the case of 4.3 MB of [11]). 

 
3. POST-TRAINING QUANTIZATION 

  
A. Presentation 

Quantization is one of the widely used methods to reduce the size of a model. This is 
done by changing the numeric format used to represent the parameters. For example, the 
representation format can be changed from a 32-bit floating-point to an integer of only 8 bits or 
less. The quantization method is frequently used for the compression of DNNs, in particular to 
facilitate the running of inference on low-cost devices such as 32-bit microcontrollers. Even if 
there are microcontrollers that have a precision FPU unit, its use is usually avoided to reduce 
memory and power consumption [12]. At the same time, however, there are many 
microcontrollers without an FPU unit. 

In the paper [13] I implemented and evaluated the available post-training quantization 
methods using the TensorFlow Lite library: (1) dynamic range quantization (PTDRQ), (2) 
integer quantization (PTIQ), (3) float16 quantization (PTFQ), and (4) integer quantization with 
int16 activations (PTIQA). 

I used three models of convolutional neural networks with different sizes: DenseNet121 
(7.0 MB) [14], ResNet50 (23.5 MB) [6] and SE-PreAct-ResNet101 (42.5 MB) [15]. I chose 
these models to track the impact on accuracy and compression ratio depending on the size. For 
training, the CIFAR-10 dataset is used for the image classification task. 

All the above mentioned quantization methods are implemented using a similar 
execution flow, as described in the block diagram shown in Figure 7. After the training stage, 
the models were saved in the SavedModel format, which is a compatible format for TensorFlow 
Lite conversion. After training the model (Step 1), in Step 2 the model with the SavedModel 
format is converted to the TensorFlow Lite format to use its size as a reference point for 
determining the compression ratio. In Step 3, the model is converted to TensorFlow Lite format 
with the quantization option enabled. In Step 4, the compression ratio is calculated as the ratio 
of the initial floating-point model size (calculated in Step 2) to the model size after quantization. 
In the last step (Step 5) the quantized model is tested using the CIFAR-10 test images, then the 
accuracy is calculated. 

 
Figure 7. TensorFlow Lite post-training quantization block diagram [13]. 



B. Conclusions 

Figure 8 shows the compression ratio obtained for each DNN model after applying the 
quantization methods. Since the original floating-point models use a 32-bit representation and 
quantization is performed on an 8-bit representation, a compression ratio of 4× is expected. 
Based on the obtained result, the compression ratio is slightly less than 4×, and using a DNN 
model with a small size (e.g. DenseNet121) the ratio tends to be smaller than the others, 
especially for dynamic range quantization and integer quantization with 16-bit activations. 
Using the 16-bit floating-point quantization method, the compression ratio is 2×. For this 
method, the difference between the DNN models is insignificant. In conclusion, the 
compression ratio using TensorFlow Lite quantization methods varies slightly depending on 
the size of the model. 

 
Figure 8. Compression ratio [13]. 

Table 2 shows the accuracy achieved after each quantization method, together with the 
accuracy before quantization and the total number of parameters. Generally speaking, the 
accuracy loss is less than 1%. Therefore, TensorFlow Lite's post-training quantization methods 
do not significantly affect the accuracy.  

More precisely, using 16-bit floating-point quantization the accuracy loss of is 
insignificant, while the model size is reduced by 50%. In some cases, for example DenseNet121 
and ResNet50, the accuracy is even improved. Using the PTIQA technique, an increase in 
accuracy of 0.01% is achieved for DenseNet121, and with the PTDRQ technique, an increase 
in accuracy of 0.02% for ResNet50 is obtained. For SE-PreAct-ResNet101, the lowest accuracy 
loss is achieved using the PTFQ technique, followed by PTIQA. Using full integer quantization, 
the largest decrease in accuracy is obtained. At the same time, however, the decrease is small. 
In the worst case, this is only 0.43% for the DenseNet121 model. A different result is obtained 
for SE-PreAct-ResNet101, where the lowest precision was obtained using dynamic range 
quantization. 

 
Table 2. Accuracy results before and after quantization. 

Features/Model 

DNN model 

DenseNet121 ResNet50 
SE-PreAct-

ResNet101 

Model size 7.0 MB 23.5 MB 42.5 MB 



Initial accuracy 95.51% 95.13% 94.76% 

PTDRQ 95.47% 95.15% 94.63% 

PTIQ 95.08% 95.03% 94.69% 

PTFQ 95.51% 95.13% 94.75% 

PTIQA 95.52% 95.12% 94.72% 

 
In the paper [13], I compared TensorFlow Lite post-training quantization methods using three 

different convolutional neural network models. They are classified according to their size as small, 
medium, and large. The compression ratio using 8-bit quantization is just under 4×, and using 16-bit 
floating-point quantization is 2×. I noticed that for the small size category, the compression ratio tends 
to be lower. The degradation of accuracy is almost insignificant; in the worst case, the impact is only 
0.43% for the small size category when using the PTIQ method. 
 

4. MAGNITUDE-BASED WEIGHTS PRUNING 

 

A. Presentation 

It has been observed that certain structural elements in a network are redundant and their 
contribution to the final prediction is small. Based on this observation, it was concluded that 
removing these elements is possible to reduce the size of a model, without a significant impact 
on accuracy. Such examples can be: removing connections, convolutional layers, or neurons 
from fully connected layers. A challenge that comes with this technique is to find a suitable 
strategy for identifying the elements that can be pruned with minimal degradation on network 
performance. 

Unlike quantization, weights pruning is a technique that addresses the problem of over-
parameterization of neural networks. It is known that the size of a neural network is not in 
complete correspondence with its performance, therefore, pruning these parameters or 
structural elements will result in a smaller size of the network, without affecting the 
performance. In addition to other compression methods, it comes as an essential strategy for 
reducing the size of the model in the face of the growing need to deploy deep learning models 
on resource-constrained devices. 

In this direction, my proposal was to use the teacher model from the paper [16] for 
implementing magnitude-based weights pruning techniques using the TensorFlow optimization 
toolkit. A weight-matrix model that contains multiple values of 0 may be more efficient in terms 
of memory footprint and inference time. However, the hardware device used may impose 
certain limitations and operations that involve 0 weights not being optimized. With this in mind, 
dedicated hardware accelerators have made progress in recent years. The recent study by V 
Isaac–Chassande et al. [17] present an overview and design details of the state-of-the-art 
dedicated hardware accelerators for random 0-value array computing. The teacher model is 
designed for estimating eye gaze in automotive applications. In the context of human-computer 
interaction, the field of gaze estimation is very important. Today, driver inattention is still a 
major contributor to car collisions. The features of Advanced Driver Assistance Systems 
("ADAS") have been specifically designed to mitigate the incidence of car accidents caused by 
driver inattention. Estimating the driver's gaze is considered a primary input for algorithms that 
can recognize inattention while driving. 

TensorFlow Model Optimization Toolkit [18] provides solutions for magnitude-based 
weights pruning. Using this pruning method, the weights that have low values are set to zero 
with the goal of eliminating unnecessary connections. This is applied during the training process 
to allow the neural network to adapt to the involved changes. The training process can only be 



fine-tuned and does not have to be performed from scratch. Using a pre-trained model and 
applying a fine-tuning step is usually a better option. 

The pruning schedule can be configured as constant sparsity schedule or by using a 
polynomial decay function. With the first configuration, a target value is defined as the 
percentage of weights that will be zero. Using the polynomial decay function, the pruning 
schedule is performed according to the polynomial decay function by specifying the initial and 
final sparisty. 

The purpose of this paper is to evaluate and compare different pruning schedules, such 
as constant sparsity schedule and polynomial decay function for magnitude-based weights 
pruning using the TensorFlow model optimization toolkit and a custom CNN architecture for 
the eye gaze estimation. 

 
B. Conclusions 

The constant sparsity schedule is applied using a final sparsity value in the range [0.10 
... 0.89] with the increment step of 0.01. This means that the model is subjected to 80 different 
configurations and training loops. A training loop is performed for 35 epochs. The schedule 
using polynomial decay function has a configuration similar to constant sparsity schedule, with 
a final sparsity value in the same range [0.10 ... 0.89] and the step of 0.01, with the same number 
of loops and training epochs. The initial sparsity is set to 0.00 for each training loop. 

The most positive result was obtained for the second experiment. In this case, the 
accuracy degradation is only 1.08%, the final elimination value is 0.75, while the compression 
ratio is 8.06. 

Table 3 shows the results obtained for the constant sparsity schedule. It comprises the 
maximum validation accuracy, the maximum test accuracy, the target sparsity for test accuracy, 
and the compression ratio at which we have achieved the maximum test accuracy. The 
experiments were conducted three times to calculate an average of the results and highlight the  
overall behavior. The average result for validation accuracy is 75.06%, while for test accuracy 
it is 73%. Considering the test accuracy of the teacher model of 74.48% [16], we achieved an 
average target sparsity value of 0.73 and a compression ratio of 7.74 with a small decrease in 
accuracy of only 1.48%. 

The most positive result was obtained for the second experiment. In this case, the 
accuracy degradation is only 1.08%, the final elimination value is 0.75, while the compression 
ratio is 8.06. 

Table 3. Results using constant sparsity schedule. 

Result 

Constant Sparsity 

1st 2nd 3rd 

Validation 

accuracy 
75.06% 75.23% 74.89% 

Test accuracy 72.47% 73.40% 73.15% 

Target sparsity 
for test accuracy 

0.76 0.75 0.68 

Compression 

ratio for test 
accuracy 

8.38 8.06 6.79 

 
Table 4 shows the results obtained for the pruning schedule using the polynomial decay 

function. The results are presented using the aforementioned performance indicators. With this 
configuration, the average result for validation accuracy is 73.8% and the average for test 



accuracy is 72.9%. These results were obtained with an average target sparsity value of 0.57 
and a compression ratio of 5.52. 

In this case, the most positive result was obtained for the first experiment, with an 
accuracy degradation of 0.74%, a final elimination value of 0.59, and a compression ratio of 
5.69. 

Using constant sparsity schedule, the model weights are significantly reduced down to 
0.76 target sparsity, achieving a maximum compression ratio of 8.38 with a degradation in test 
accuracy of only 1-2%. With the pruning schedule using the polynomial decay function, the 
target sparsity value obtained is maximum of 0.62 with a compression ratio of 6, lower than in 
the case of constant sparsity schedule, while the accuracy degradation is similar to constant 
sparsity. Based on the above results, it can be concluded that in order to achieve high target 
sparsity, constant sparsity schedule is a more suitable choice compared to the polynomial decay 
function. 

 
Table 4. Results using polynomial decay function pruning schedule. 

Result 

Polynomial Decay Function 

1st 2nd 3rd 

Validation 
accuracy 

73.79% 73.53% 74.21% 

Test accuracy 73.74% 72.47% 72.47% 

Target sparsity 

for test accuracy 
0.59 0.5 0.62 

Compression 
ratio for test 

accuracy 

5.69 4.88 6 

 
In this paper we have implemented and evaluated the following magnitude-based 

weights pruning schedules: constant sparsity schedule and polynomial decay function pruning 
schedule with the implementation performed using TensorFlow model optimization toolset. 
Using constant sparsity schedule, a compression ratio of up to 8.06 with a target sparsity value 
of 0.75 can be achieved, while the accuracy degradation is only 1.08%. Using polynomial decay 
function pruning schedule, the result is less satisfactory in terms of compression ratio, which is 
up to 5.69 with a final value of 0.59, while the accuracy degradation is 0.74%. Therefore, 
constant sparsity schedule is a better choice compared to the polynomial decay function. 

 

5. KNOWLEDGE DISTILLATION 

 

A. Presentation 

In the paper [16] I set out to address the problem of eye gaze estimatimation with 
applicability in the automotive field. My proposal uses a concept of knowledge distillation 
applied to a custom CNN model architecture, with the role of a teacher model. The field of eye 
gaze estimation has significant importance in the context of human-computer interaction and 
for multiple applications in various fields, such as the automotive industry, market research and 
medical. Currently, drivers' inattention continues to be an essential factor that in most situations 
leads to car collisions. Implementation of advanced driver assistance systems („Advanced 

Driver-Assistance Systems”, ADAS) was proposed as a potential solution to mitigate the 
incidence of car accidents caused by driver inattention. The driver's gaze can be an indicator 
for detecting fatigue or inattention while driving. In such situations, it is possible to give 



warnings to the driver and, if necessary, decide on appropriate measures to avoid a collision 
[19]. 

Compressing a DNN model is a common practice for achieving a small network for 
low-cost and resource-limited hardware devices. Knowledge distillation is a particular method 
that involves training to transfer knowledge from a larger-sized network to another network that 
is significantly smaller in size. Bucilua et al. [20] successfully demonstrated for the first time 
that the knowledge gained from a large set of models can be transferred to a single and smaller 
model. The purpose of using this method is to train the student network so that it replicates the 
performance of the teacher network, but with a smaller size, respectively fewer memory usage 
and computational resources. 

The process of implementing the knowledge distillation algorithm involves the 
following main steps: (1) defining the teacher and student networks, (2) training the teacher 
network and (3) training the student network with knowledge transfer from the teacher network. 
These three steps are briefly outlined below. 

1) Defining teacher and student networks 

The teacher network can be a standard high-performance model with a large number of 
parameters (e.g. ResNet, DenseNet or EfficientNet), while the student network can also be a 
standard model but with a smaller number of parameters. Depending on the task, a custom 
architecture of teacher or student networks can also be used. 

2) Teacher Network Training 

The teacher network is trained using a standard training procedure, with the aim of 
achieving the best accuracy. 

3) Training the student network with knowledge transfer from the teacher network 

At this stage, the knowledge distillation algorithm is used. Forward propagation is 
performed for the teacher and student networks, while backward propagation applies only to 
the student network. The primary loss function is defined using two distinct loss functions: the 
student loss function and the distillation loss function. 

The model's knowledge are classified into three different types: response-based 
knowledge, feature-based knowledge, and relationship-based knowledge [21]. Response-based 
knowledge focuses on the final output layer, where the student model will learn the predictions 
of the teacher model. Feature-based knowledge uses the knowledge from the intermediate 
layers of the teacher model to train the student model. Relationship-based knowledge focuses 
on the correlation between feature maps, graphs, similarity matrix, feature embeddings, or 
probabilistic distributions. In this thesis, we used response-based knowledge because it showed 
the best results for different tasks and applications. 

The block diagram for the knowledge distillation algorithm is shown in Figure 9. 

 
Figure 9. Block diagram for knowledge distillation [16]. 



 
The transfer of knowledge from the teacher model to the student one is achieved by 

minimizing the main loss function in order to produce the same probabilities as those produced 
by the teacher model. More specifically, this refers to the output of the "Softmax" function  
applied to predictions before they are normalized. For these predictions of the teacher model, 
the name "logits" is usually used. Most commonly, the correct class of the probability 
distribution has a higher level compared to the other class probabilities that are close to zero. 
Therefore, the result provided by this probability distribution is very similar to the grounds truth 
labels of the dataset. Regarding this behavior, Hinton et al. [22] introduced the softmax 
parameter "temperature". By denoting this parameter with T, the probability of class �	 in 
"logit" 
	 is calculated with the equation (5.1). 

�	  =  
�� �
	/��

∑ �� �
�/���
 

(5.1) 

 

When the parameter T is set to the value 1, the equation becomes a  standard "Softmax" 
function. When T has a value greater than 1, the probability distribution will provide more 
information about the classes for which the teacher model reported a prediction close to the 
correct class. This is the knowledge of the teacher model that is transferred to the student model 
using the distillation algorithm. When the distillation loss function is calculated using the "soft" 
labels, the same value of T is used to calculate the "softmax" function  on  the "logits" of the 
student model. 

Model training with knowledge distillation has been observed to be a benefit using the 
ground truth labels of the dataset as well. Therefore, the second loss function is calculated with 
the parameter T set to the value 1. This is a standard loss function called the student model loss 
function. By noting the distillation loss function with �� (5.2) and the loss function of the 
student model with �� (5.3), the main loss function is calculated using the equation (5.4): 

�� = ����
�; � =  ��, ��
�; � =  ���  (5.2) 

 

�� = ���, ��
�; � = 1�� (5.3) 

 

���; �� =  � ∗ �� +  " ∗  �� (5.4) 

 

where H is the cross-entropy loss function, σ is the "Softmax" function, and  
� ,
� are the 

"logits" of the teacher and student models, y is the ground truth label, x is the input, W are the 
parameters of the student model, and α, β are coefficients. 

 The teacher model is a small custom CNN model with only 5 convolutional layers. It is 
used as a base model for student models. To get a smaller student model, we applied two 
different methods: layerwise compression and widthwise compression. Layerwise compression 
involves reducing the number of convolutional layers, while widthwise compression stands for 
reducing the number of filters. The optimal student model is considered to be the one that has 
the smallest size, but at the same time has not suffered a significant loss of accuracy. To increase 
the search space in finding the most optimal student model, various combinations of layerwise 
and widthwise compression are also considered. 

For layerwise compression, I have defined the following student models: 

 Student_cut5, where I gave up the last convolutional layer; 



 Student_cut4, where I gave up the last two convolutional layers; 

 

For widthwise compression, I have defined the following student models: 

 Student_width10, a model with 10% fewer filters; 

 Student_width30, a model with 30% fewer filters; 

 Student_width50, a model with 50% fewer filters. 

Layerwise and widthwise compression combinations are defined by applying widthwise 
compression to the student models resulting from layerwise compression. I used the name 
Student_cutX&widthY, where X is the layerwise compression model and Y is the widthwise 
compression model. In total, 11 student models were obtained with the aim of finding the 
optimal configuration. 

 
B. Conclusions 

• Results using the knowledge distillation algorithm on the PC station 

Depending on the user's requirements, the compression of a model can be for several 
types of outcomes: (1) reducing the size of the model without an impact on performance or even 
improving accuracy if possible, (2) reducing the model size and inference time, while 
supporting a small degradation in accuracy, and (3) significantly reducing the model size and 
inference time,  but keeping accuracy within acceptable limits. 

Based on the results obtained, the following models can be used for the first case: 
Student_cut5, Student_width10 and Student_cut5&width10. In the case of these models, the 
accuracy is higher than that of the teacher model. The highest compression ratio and reduction 
of inference time are achieved with the Student_cut5&width10 model. However, if the user's 
requirement is not to achieve maximum accuracy, then the Student_cut5&width10 model  is the 
most suitable solution. 

For the second case, with the following models we achieved a decrease in accuracy of 
less than 1% compared to the teacher model: Student_cut4, Student_width30 and 
Student_cut5&width30. The highest compression ratio and inference time reduction are 
achieved for the Student_cut5&width30 model, which is best suited for this category. 

When model size and inference time reduction are considered the most important 
aspects, the following models are best suited: Student_width50, Student_cut5&width50, 
Student_cut4&width10, Student_cut4&width30,  and Student_cut4&width50. The highest 
compression ratio and reduction of inference time was achieved with the 
Student_cut4&width50 model, but in this case the accuracy is only 68.29%. The model in this 
category that has the highest accuracy is Student_cut4&width10. Its accuracy is close to that of 
the teacher model, and the compression ratio is 3.24. 

Based on the results presented above, the following conclusions can be summarized: 

 Using the knowledge distillation algorithm, accuracy can be improved by up to 9.5% 

compared to using a conventional training procedure. This can be achieved using the 

model obtained from the layer and width compression method: Student_cut4&width30; 

 The knowledge distillation algorithm is more efficient when the coefficient α is set to 0 

or 0.5 and T is set to a higher value, such as 14. Therefore, the efficiency is higher when 

the main loss function (5.4) is based only on the distillation loss function �� or when 

the student loss function �� and distillation loss function �� have the same weight; 

 The combined use of layerwise and widthwise compression is more effective than using 

them independently; 



 The inference time is reduced more using widthwise compression compared to 

layerwise compression. The combination of these leads to an improvement, but not 

significantly. 

• Results on the STM32H747I-DISCO hardware platform 

The purpose of validation on the STM32H747I-DISCO platform is to demonstrate that 
the resulting accuracy is similar to that obtained on the PC station, given that no compression 
is applied that could introduce a reduction in accuracy. The small difference that is noticeable 
may be a consequence of the fact that the accuracy is calculated using different instruments. 

Regarding the use of RAM and ROM, the following considerations can be briefly 
presented depending on the layerwise or widthwise compression: (1) RAM usage is lower using 
widthwise compression (in the case of layerwise compression, the difference is not significant), 
(2) ROM usage is gradually lower as the size of the model decreases (in this case,  there is no 
visible difference between layerwise and widthwise compression, and (3) the combination of 
layerwise compression and widthwise compression is more efficient because the RAM required 
is also reduced. 

MACC complexity is higher when using layerwise compression. This is significantly 
reduced when using widthwise compression. The most effective choice is also to use a 
combination of layerwise and widthwise compression. 

The inference time follows a distribution similar to that presented in the results obtained 
on the PC station. In conclusion, inference time is reduced more using widthwise compression, 
and the combination with layerwise compression leads to improvements. In the case of the 
Student_cut4&width30 model, the inference time is 870.5 ms, and the accuracy is 73.66%. This 
denotes that one frame per second can be achieved with an accuracy close to the maximum 
value. This inference time can be supported for practical applications, which allows the 
implementation of a real-time gaze detection system on a low-cost and energy-efficient 
hardware platform. 

Nowadays, deep neural networks and their associated paradigm of deep learning are 
ubiquitous in the automotive field. Published paper [16] refers to an optimization procedure that 
aims to implement a neural network model for the eye gaze estimation problem on low-cost 
hardware. My proposal uses a concept of knowledge distillation applied to a custom CNN 
architecture, called the teacher model. Based on this, several CNN student models are derived 
using layerwise and widthwise compression techniques. Subsequently, they are evaluated in 
terms of different performance metrics such as, neural network size and inference time. We 
have proposed the analyzed compression methods that are more suitable and can meet specific 
user requirements, such as model size, accuracy, and inference time. Finally, we evaluated the 
student models on the STM32H747IDISCO embedded device in terms of accuracy, memory 
usage, MACC complexity, and inference time. Using the knowledge distillation algorithm, 
accuracy can be improved by up to 9.5% compared to the conventional training procedure. A 
compression ratio of up to 8.86 is achieved with a decrease of less than 10% in accuracy. The 
inference time using width compression is reduced more. Combining layer and width 
compression is more efficient and a good compromise between model size, accuracy, and 
inference time. The results of validation on STM32 hardware showed that in order to reduce 
the use of RAM and ROM, the combination of layer and width compression is the optimal 
solution. This solution is also the right choice for optimizing MACC complexity and inference 
time simultaneously. However, I was able to identify some limitations of the methodology used, 
as it only transfers knowledge related to the results of the initial model and does not capture the 
internal representations learned by the teacher model. Also, the student model can learn less 



from the teacher model variants where there is an important architectural gap compared to the 
student model. 

 

6. CONCLUSIONS AND PERSONAL CONTRIBUTIONS 

 
Deep neural networks have reached a very advanced stage in recent years, being used 

more and more frequently for different applications and devices in people's lives. Obviously, 
artificial intelligence will be a field that profoundly marks the technological progress of the 
current century. The use of neural network models from very isolated applications such as 
smartwatches to applications that solve as many requirements as possible with a single model 
has led to the need for a very large diversity of models. At the same time, it is known that the 
high-end models with which the best performance has been achieved are very expensive in 
terms of occupied memory, computing requirements and power consumption. For this reason, 
in the relatively recent period and today the level of research has reached a point where the 
focus is on designing smaller models with satisfactory performance and that are suitable for the 
class of isolated applications (mentioned above). Meanwhile, to build on the already existing 
progress with large neural networks, the compression of pre-trained neural networks is another 
parallel research point. These directions are justified by the large number of billions of local 
devices that require artificial intelligence algorithms [23]. Therefore, I have noted the relevance 
of a research at the level of doctoral studies in this direction, having as its main purpose the 
compression of deep neural networks. 

The main contribution of this thesis is the study, description and implementation of deep 
neural network compression algorithms such as quantization, knowledge distillation and 
magnitude-based weight pruning using convolutional neural networks of different sizes and a 
specific model for the driver's eye gaze detection application. The implementation was carried 
out using different configurations in order to present in a detailed way the results regarding the 
accuracy, the compression ratio obtained and the inference time with a focus on the right 
configuration according to the system requirements.  

During this doctoral thesis, I studied more than 160 bibliographic titles, I elaborated two 
articles published in ISI journals Q2 („IEEE Access”), Q3 („MDPI Electronics”) and indexed 

„Web of Science”; an indexed conference paper „ISI Proceedings” and „Web of Science”; an 
indexed conference paper BDI and two conference papers that are currently being drafted. For 
all these works I contributed as first author, except for the last conference paper that is being 
written and where I will be as second author. I would like to point out that currently the papers 
have a total of 31 citations according to the Google Scholar report. In the next section I have 
presented the personal contributions at the level of detail for each scientific paper. 

 
The personal contributions present in the journal article ISI Q3 („MDPI Electronics”) 

[24] are: 
 

• I have presented some low-cost (less than $10 for a microcontroller) and representative 
hardware devices along with the libraries or supporting tools that help implement 
machine learning algorithms on them;  

• I have summarized 13 papers in recent years where microcontrollers with ARM Cortex-
M CPUs have been used to run machine learning algorithms. I aimed to point out the 
following main aspects: the architecture of the model, the hardware characteristics (such 
as: available memory footprint, CPU architecture and operating frequency), the tools 
and support libraries used together with the results obtained in terms of: accuracy, 
inference time and power consumption; 

• I have described in detail the results obtained with a focus on the cases where the best 



results have been obtained. I have also discussed the main reasons that are in many cases 
an impediment to achieving the desired results; 

• I have highlighted research challenges and opportunities that highlight important 
aspects and pose a challenge for future progress in this field. 

 
The personal contributions present in the journal article ISI Q2 („IEEE Access”) [16] 

are: 
 

• I have defined and trained a custom CNN architecture to classify the eye gaze 
estimation, with a size of 6.14 MB and an accuracy of 77.48%; 

• I applied the knowledge distillation methodology with different configurations to train 
multiple student models defined using layerwise and widthwise compression methods. 
For the teacher model I used the custom CNN architecture; 

• I presented an evaluation of the experimental results in order to identify the most 
appropriate compression method according to the user's requirements, such as: model 
size, desired accuracy and expected time for an inference; 

• I validated the student models using the AI validation interface of the X-CUBE-AI 
extension package on the STM32H747I-DISCO hardware device. To this end, I have 
presented details on the accuracy achieved, memory usage, MACC complexity, and 
inference time. 

 
Personal contributions present in the indexed conference paper „ISI Proceedings” and 

„Web of Science” [7] are: 
 

• I have converted a CNN network model from the generic Caffe format to a format 
compatible with the STM32 microcontroller; 

• I have implemented the interfaces between the peripheral modules (such as LCD display 
module and camera module) and the CNN model, so that together they form a functional 
system; 

• I validated the CNN model directly on the microcontroller in real time using the camera 
module and tested the overall behavior of the model using the test images of the CIFAR 
10 dataset. 

 
Personal contributions present in the indexed conference paper BDI [13] are: 
 

• I have compared the compression ratio that is obtained using 8-bit integer quantization 
and 16-bit floating-point quantization using four different PTQ techniques; 

• I analyzed the compression ratio according to the size of the DNN model, using three 
different models; 

• I have highlighted the influence of PTQ techniques on the accuracy of the models. 
 

The personal contributions present in the paper aimed on magnitude-based weights 
pruning (work in progress) are: 

 
• I have applied the technique magnitude-based weight pruning to a custom CNN model 

trained in order to classify the eye gaze estimation; 
• I have compared the constant sparsity schedule and the polynomial decay function 

with respect to the compression ratio, the target sparsity, the test and validation 
accuracy; 

• I have presented an evaluation of the experimental results in order to identify the 



appropriate schedule for magnitude-based weights pruning in order to obtain a high 
degree of elimination and a high compression ratio, without a significant loss of 
accuracy. 
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