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Camelia ARIEŞANU, Department of Mathematics, Politehnica University Timisoara
Nicolae M. AVRAM, Faculty of Physics, West University of Timisoara
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ON THE DYNAMICS OF A DEFORMED VERSION
OF THE SHIMIZU-MORIOKA SYSTEM

Cristian LĂZUREANU, Jinyoung CHO

Abstract

In this paper, we construct a family of integrable deformations of the Shimizu-
Morioka chaotic model. We discuss the stability of a particular deformed system
which belongs to this family and we emphasize its chaotic behavior. We also
perform some numerical simulations in order to show the transition to chaos
and the deformation of the chaotic attractor.1

1 Introduction

The real life phenomena are often modeled by systems of first order differential
equations. Particularly, phenomena with chaotic behavior are widely investigated
(see, e.g., [1, 3, 28, 31]) and many chaotic systems were introduced and discussed (see,
e.g., [2, 4, 35, 36, 37, 40]). In 1963, Lorenz reported the first chaotic system, so called
the Lorenz model [27]. In 1980, Shimizu and Morioka introduced a more tractable
model which displays similar dynamics as the Lorenz system [34]. A simplified form
of the Shimizu-Morioka system is given by

ẋ = y
ẏ = x− λy − xz
ż = −az + x2

, (1)

where a, λ ∈ R.
System (1) has been investigated from the dynamical point of view, see for

instance a partial list of references: chaotic behavior [33, 41], control of chaos [30, 6],
bifurcations [38, 26], integrability [11], Jacobi stability [39].

1MSC(2010): 37D45, 70H05
Keywords and phrases: Hamilton-Poisson systems, integrable deformation, stability, chaotic sys-
tems.
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4 C. Lăzureanu & J. Cho

Recently, integrable deformations of some Hamilton-Poisson systems were dis-
cussed (see, e.g., [7, 10, 14, 15, 18, 21, 22, 23, 24]). Moreover, the integrable de-
formations method for a three-dimensional system of differential equations [16] was
applied to some dissipative systems [17, 19, 20]. In this paper, we will apply the
above-mentioned method to system (1).

The paper is organized as follows. In Section 2, we construct some integrable
deformations of system (1). Then we consider a particular deformation which has
the same divergence as the initial system and the same axis of symmetry. In Section
3, we discuss the stability of the new system. More precisely, we get the equilib-
rium points taking into account the variation of the parameters. Then, we study
the stability of the isolated hyperbolic equilibrium points by using the first Lya-
punov’s stability criterion [25] and Routh-Hurwitz theorem [8]. Also, we establish
the stability of the isolated non-hyperbolic equilibrium points by computing the first
Lyapunov coefficient (see, e.g., [13]). In Sections 4 and 5, we perform some numerical
simulations and point out the chaotic behavior of the considered deformed system.

2 Integrable Deformations of the Shimizu-Morioka sys-
tem

In this section, we construct some deformation of the Shimizu-Morioka system. De-
formations of the system are obtained by using the integrable deformations method
for three dimensional systems of differential equations [16].
System (1) writes

ẋ = f(x),

where x = (x, y, z) ∈ R3 and f(x) = (y, x−λy−xz,−az+x2). We choose the vector
fields g(x) and h(x) such that f(x) = g(x)+h(x) and the system ẋ = g(x) has two
functionally independent constants of motion H = H(x) and C = C(x), that is

∇H ×∇C ̸= 0, Ḣ = Ċ = 0.

We have

g(x) = (y, x, 0) , h(x) = (0,−λy − xz,−az + x2).

The system ẋ = g(x), that is 
ẋ = y
ẏ = x
ż = 0

,

has the constants of the motion

H(x, y, z) = z , C(x, y, z) =
1

2
x2 − 1

2
y2.
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It is easy to see that g(x) = ∇H ×∇C. Hence an integrable deformation of system
(1) is given by [16]

ẋ = ∇H̃ ×∇C̃ + h(x), (2)

where H̃ = H +α, C̃ = C+β and α, β are arbitrary differentiable functions on R3.
Therefore, we obtain the following result.

Proposition 2.1. Let α, β be arbitrary differentiable functions on R3. Then a
family of integrable deformations of system (1) is given by

ẋ = y − βy + yαz + αyβz − αzβy
ẏ = x− λy − xz + βx + xαz − αxβz + αzβx
ż = −az + x2 − yαx − xαy + αxβy − αyβx

(3)

where a, λ ∈ R and fx :=
∂f

∂x
.

Particular families of integrable deformations are obtained by choosing the de-
formation function α = 0, that is (3) becomes

ẋ = y − βy
ẏ = x− λy − xz + βx
ż = −az + x2 − yαx − xαy

.

Also, if β = 0, then we obtain
ẋ = y + yαz

ẏ = x− λy − xz + xαz

ż = −az + x2 − yαx − xαy

.

We consider the deformation functions α =
g

2
z2 and β = 0. System (3) becomes

ẋ = y(1 + gz)
ẏ = x− λy + (g − 1)xz
ż = −az + x2

, a, λ, g ∈ R. (4)

The first dynamical properties of the above system are given by the next two remarks.

Remark 2.2. Notice that system (4) has the same divergence as the initial system
(1), namely

∇ · f = −(a+ λ).

Therefore, if a + λ > 0, then both systems are dissipative. A dissipative system
has ”a state space volume that decreases on average along the trajectory so that the
orbit approaches an attractor of measure zero in the state space” [36]. In the case
of three-dimensional dissipative dynamical systems, these attractors are stable foci,
limit cycles, attracting 2-tori, or strange chaotic attractors (see, e.g., [12]).



6 C. Lăzureanu & J. Cho

Remark 2.3. Shimizu-Morioka system (1) is invariant under the transformation
(x, y, z) → (−x,−y, z), thus the z-axis is its axis of symmetry. System (4) has the
same property. Therefore, a symmetrical orbit or a pair of symmetrical orbits corre-
sponding to symmetrical initial conditions appear in the dynamics of these systems.
In addition, the number of the equilibrium points is odd.

Figure 1: A pair of symmetric stable foci attractors E−
1 and E+

1 , for a = 0.34, λ = 0.77,
g = −2.34, with initial conditions x0 = x(E−

1 )− 0.01, y0 = y(E−
1 )− 0.01, z0 = z(E−

1 ) + 0.01 (blue)
and x0 = x(E+

1 ) + 0.01, y0 = y(E+
1 ) + 0.01, z0 = z(E+

1 ) + 0.01 (red) respectively.

Figure 2: A pair of symmetric limit cycles around E−
1 and E+

1 , for a = 0.34, λ = 0.77, g = −1.34,
with initial conditions x0 = x(E−

1 ) − 0.01, y0 = y(E−
1 ) − 0.01, z0 = z(E−

1 ) + 0.01 (blue) and
x0 = x(E+

1 ) + 0.01, y0 = y(E+
1 ) + 0.01, z0 = z(E+

1 ) + 0.01 (red) respectively.

System (1) displays some types of the above-mentioned attractors. In Figures
1 and 2 are presented pairs of symmetric stable foci and symmetric stable limit
cycles respectively. Also, a symmetric limit cycle is shown in Fig. 3, and a chaotic
attractor is plotted in Fig. 9.

In the sequel, we will study the stability of the chaotic behavior of system (4).
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Figure 3: A symmetric limit cycle around E−
1 and E+

1 , for a = 0.8, λ = 1, g = 0.14, with initial
conditions x0 = 0.01, y0 = 0.01, z0 = 0.01.

3 Stability

In this section, the equilibrium points of the system (4) are identified, and the
stability of these equilibrium points is analyzed.

An equilibrium point of the system ẋ = f(x) is a stationary point of the system,
that is that solution which fulfills the condition

(ẋ(t), ẏ(t), ż(t)) = (0, 0, 0),∀t ∈ R.

Then the equilibrium points of the system (4) are the solutions of the system
y(1 + gz) = 0
x− λy + (g − 1)xz = 0
−az + x2 = 0

. (5)

By solving system (5), we obtain the following equilibrium points of system (4).

Proposition 3.1. Let a, λ, g ∈ R.

1. If a ̸= 0, λ ̸= 0, g ̸∈ {0; 1}, a

1− g
< 0,

a

g
> 0, then the equilibrium point is

O(0, 0, 0).

2. If a ̸= 0, λ ̸= 0, g ̸∈ {0; 1}, a

1− g
> 0,

a

g
> 0, then the equilibrium points are

O(0, 0, 0) and E±
1

(
±
√

a

1− g
, 0,

1

1− g

)
.

3. If a ̸= 0, λ ̸= 0, g ̸∈ {0; 1}, a

1− g
< 0,

a

g
< 0, then the equilibrium points are

O(0, 0, 0) and E±
2

(
±
√

−a

g
,± 1

λg

√
−a

g
,−1

g

)
.
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4. If a ̸= 0, λ ̸= 0, g ̸∈ {0; 1}, a

1− g
> 0,

a

g
< 0, then the equilibrium points are

O(0, 0, 0), E±
1 , and E±

2 .

5. If a > 0, λ ̸= 0, g = 1, then the equilibrium point is O(0, 0, 0).

6. If a < 0, λ ̸= 0, g = 1, then the equilibrium points are O(0, 0, 0) and E±
2 .

7. If a > 0, λ ̸= 0, g = 0, then the equilibrium points are O(0, 0, 0) and E±
1 .

8. If a < 0, λ ̸= 0, g = 0, then the equilibrium point is O(0, 0, 0).

9. If a ̸= 0, λ = 0, g = 1, then the equilibrium point is O(0, 0, 0).

10. If a ̸= 0, λ = 0, g ̸= 1,
a

1− g
< 0, then the equilibrium point is O(0, 0, 0).

11. If a ̸= 0, λ = 0, g ̸= 1,
a

1− g
> 0, then the equilibrium points are O(0, 0, 0)

and E±
1 .

12. If a = 0, λ = 0, g = 0, then the equilibrium points are EM (0, 0,M), M ∈ R.

13. If a = 0, λ = 0, g ̸= 0, then the equilibrium points are EM (0, 0,M) and

EN

(
0, N,−1

g

)
, M,N ∈ R.

14. If a = 0, λ ̸= 0, then the equilibrium points are EM (0, 0,M), M ∈ R.

In the following we study the stability of the isolated equilibrium points obtained
above. We begin with the stability of O(0, 0, 0).

Proposition 3.2. For every a, λ, g ∈ R the equilibrium point O(0, 0, 0) is unstable.

Proof. The jacobian matrix of system (4) at O(0, 0, 0) is

J(0, 0, 0) =

0 1 0
1 −λ 0
0 0 −a

 .

The characteristic polynomial is

P (µ) = −(µ+ a)(µ2 + λµ− 1)

with eigenvalues

µ1 = −a, µ2 =
−λ−

√
λ2 + 4

2
, µ3 =

−λ+
√
λ2 + 4

2
.

We observe that µ3 > 0 for all a, λ, g ∈ R. Therefore O(0, 0, 0) is an unstable
equilibrium point.
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In the next result we present the stability of the equilibrium points E±
2 .

Proposition 3.3. If a ̸= 0, λ ̸= 0, g ̸= 0,
a

g
< 0, then the equilibrium points

E±
2

(
±
√

−a

g
,± 1

λg

√
−a

g
,−1

g

)
are unstable.

Proof. The jacobian matrix of system (4) at E−
2 and E+

2 is

J(E±
2 ) =



0 0 ± 1

λ

√
−a

g

1

g
−λ ∓(1− g)

√
−a

g

±2

√
−a

g
0 −a


.

The characteristic polynomial for both equilibrium points is

P (µ) = − (µ+ λ)

(
µ2 + aµ+

2a

λg

)
with eigenvalues

µ1 = −λ, µ2 =
1

2

(
−a−

√
a2 − 8a

λg

)
, µ3 =

1

2

(
−a+

√
a2 − 8a

λg

)
.

1. If λ < 0, then µ1 > 0. Thus, the equilibrium points E±
2 are unstable.

2. If λ > 0, then µ1 < 0 and µ2,3 ∈ R. We observe that µ3 > 0 for all a, λ, g ∈ R∗.

Therefore, E±
2 are unstable equilibrium points, as required.

In the last theorem we discuss the stability of the equilibrium points E±
1 .

Theorem 3.4. Let a ̸= 0, λ ∈ R, g ̸= 0,
a

1− g
> 0.

(i) If

[
a+ λ > 0, a

(
λ2 + aλ− 2

1− g

)
> 0

]
, then the equilibrium points E±

1 are

asymptotically stable.

(ii) If

[
a > 0, λ > 0, λ2 + aλ− 2

1− g
= 0, l1(0) < 0

]
, then the equilibrium points

E±
1 are weak asymptotically stable.
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(iii) If (a+ λ ≤ 0) or (aλ < 0) or

[
a > 0, λ > 0, λ2 + aλ− 2

1− g
< 0

]
or (a >

0, λ = 0) or

[
a > 0, λ > 0, λ2 + aλ− 2

1− g
= 0, l1(0) > 0

]
, then the equilib-

rium points E±
1 are unstable.

The first Lyapunov coefficient l1(0) is given by (9).

Proof. The jacobian matrix of system (4) at E−
1 and E+

1 is

J(E±
1 ) =



0
1

1− g
0

0 −λ ∓
√

a(1− g)

±2

√
a

1− g
0 −a


,

with the characteristic equation

µ3 + (a+ λ)µ2 + aλµ+
2a

1− g
= 0. (6)

We denote a1 = a+λ, a2 = aλ, a3 =
2a

1− g
, whence a1a2−a3 = a

(
λ2 + aλ− 2

1− g

)
.

By hypothesis, a3 > 0. Using the Routh-Hurwitz theorem (see, e.g., [8]), we obtain
following results:

1. If a + λ > 0 and a

(
λ2 + aλ− 2

1− g

)
> 0, then the characteristic equation

(6) has all roots with negative real part. It follows that E±
1 are asymptotically

stable equilibrium points.

Hence, (i) is proved.

2. If a + λ < 0 or aλ < 0, then the characteristic equation (6) has at least one
root with real part strictly positive. Therefore, the equilibrium points E±

1 are
unstable.

3. If a + λ > 0, aλ > 0, and a

(
λ2 + aλ− 2

1− g

)
< 0, then the characteristic

equation (6) has a negative real root and a pair of complex conjugate roots
with a positive real part. Thus, the equilibrium points E±

1 are unstable.

4. If a+λ = 0, then the characteristic equation (6) has at least one root with real
part strictly positive. It follows that the equilibrium points E±

1 are unstable.
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5. If a > 0 and λ = 0, then the characteristic equation (6) has at least one
root with a positive real part. Consequently, the equilibrium points E±

1 are
unstable.

Hence, the statement (iii) is proved, less the last condition.
Now, let a ∈ R∗, λ, g ∈ R be such that

a+ λ > 0, aλ > 0, a

(
λ2 + aλ− 2

1− g

)
= 0.

Then a > 0, λ > 0 and g = 1− 2

λ(a+ λ)
. Moreover, the characteristic equation (6)

has the eigenvalues µ1 = −(a+ λ), µ2,3 = ±i
√
aλ.

In this case, there exist a negative real eigenvalue and a pair of purely imaginary
eigenvalues. Therefore, the stability of E−

1 is analyzed by applying the procedures
proposed by Kuznetsov [13].

First, we translate the equilibrium point E−
1 into origin. Under the transforma-

tion 

x = X −
√

a

1− g

y = Y

z = Z +
1

1− g

,

system (4) becomes

Ẋ = Y

(
gZ +

1

1− g

)
Ẏ = −λY +

√
a(1− g)Z + (g − 1)XZ

Ż = −aZ +X2 − 2

√
a

1− g
X

. (7)

The eigenvectors corresponding to eigenvalues µ1 = −(a + λ), µ2 = −i
√
aλ, µ3 =

i
√
aλ are:

v1 =

(
1,− 2

λ
,

√
2a(a+ λ)

λ

)
,

v2 =

(
1,

−2i

a+ λ

√
a

λ
,−(

√
a+ i

√
λ)

√
2λ

a+ λ

)
,

v3 =

(
1,

2i

a+ λ

√
a

λ
,−(

√
a− i

√
λ)

√
2λ

a+ λ

)
.
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We define the vectors

T = Re(v3) =

(
1, 0,−

√
2aλ

a+ λ

)
,

W = Im(v3) =

(
0,

2

a+ λ

√
a

λ
, λ

√
2

a+ λ

)
.

Using the vectors 2T,−2W and v1 as columns, we construct the matrix

B =



2 0 1

0 −2β2

√
a

λ
− 2

λ

−2β
√
aλ −2βλ

2

β

√
a

λ


,

where we denote β =

√
2

a+ λ
.

Considering the transformation
X

Y

Z

 = B ·


u

v

w

 ,

that is

(T ) :



X = 2u+ w

Y = −2β2

√
a

λ
v − 2

λ
w

Z = −2β
√
aλu− 2βλv +

2

β

√
a

λ
w

,

we get the normal form of system (7), namely
u̇ = −

√
aλv + F1(u, v, w)

v̇ =
√
aλu+ F2(u, v, w)

ẇ = −(a+ λ)w + F3(u, v, w)

, (8)
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where

F1(u, v, w) = γA

[
−β3u− 4β(λ− β2)

λ2

√
a

l
v −

(
4(λ− β2)

λ3β
+

β3

2

)
w

]
− γβ2

2

√
a

λ
(2u+ w)2 ,

F2(u, v, w) = γA

[
β

(
2

λ
+ β2

)√
a

λ
u+

2β3a(λ− β2)

λ2
v

+

(
β

λ
+

β3

2
+

2β(λ− β2)

λ2

)√
a

λ
w

]
− γ

λ
(2u+ w)2 ,

F3(u, v, w) = γA

[
2β3u− 2aβ5(λ− β2)

λ2

√
a

l
v −

(
2aβ3(λ− β2)

λ2
− β3

)
w

]
+

γβ2

√
a

λ
(2u+ w)2 .

We have denoted γ =

(
4

λβ
+ aβ3

)−1

, and A = −2β
√
aλu− 2βλv +

2

β

√
a

λ
w.

By applying procedures and formulas proposed by Hassard [9], the aforemen-
tioned coefficients are given by:

g11 =
1

4

[
∂2

∂u2
F1 +

∂2

∂v2
F1 + i

(
∂2

∂u2
F2 +

∂2

∂v2
F2

)]
,

g02 =
1

4

[
∂2

∂u2
F1 −

∂2

∂v2
F1 − 2

∂2

∂u∂v
F2 + i

(
∂2

∂u2
F2 −

∂2

∂v2
F2 + 2

∂2

∂u∂v
F1

)]
,

g20 =
1

4

[
∂2

∂u2
F1 −

∂2

∂v2
F1 + 2

∂2

∂u∂v
F2 + i

(
∂2

∂u2
F2 −

∂2

∂v2
F2 − 2

∂2

∂u∂v
F1

)]
,

h11 =
1

4

[
∂2

∂u3
F3 +

∂2

∂v3
F3

]
, h20 =

1

4

[
∂2

∂u3
F3 −

∂2

∂v3
F3 − 2i

∂2

∂u∂v
F3

]
,

w11 = −h11
µ1

, w20 =
h20

2iα0 − µ1
,

G10 =
1

2

[
∂2

∂u∂w
F1 +

∂2

∂v∂w
F2 + i

(
∂2

∂u∂w
F2 −

∂2

∂v∂w
F1

)]
,

G01 =
1

2

[
∂2

∂u∂w
F1 −

∂2

∂v∂w
F2 + i

(
∂2

∂u∂w
F2 +

∂2

∂v∂w
F1

)]
,

G21 =
1

8

[
∂3

∂u3
F1 +

∂3

∂u∂v2
F1 +

∂3

∂u2∂v
F2 +

∂3

∂v3
F2

+ i

(
∂3

∂u3
F2 +

∂3

∂u∂v2
F2 −

∂3

∂u2∂v
F1 −

∂3

∂v3
F1

)]
,

g21 = G21 + 2G10w11 +G01w20.



14 C. Lăzureanu & J. Cho

where α0 = Im(µ3).
The first Lyapunov coefficient for E−

1 is given by

l1(0) =
1

2aλ
Re
(
ig20g11 + g21

√
aλ
)
, (9)

where

g11 =
γ

λ

[
β2√a(β2λ2 − 4β2 + 3λ)√

λ
+ i(2aβ6 − 3aβ4λ− 2aβ2 − 2)

]
,

g02 =
γ

λ

[
−β2√a(2aβ4 − 2aβ2λ− 2β2λ2 − 4β2 + 3λ)√

λ

−i

(
2aβ6λ− aβ4λ2 − β4λ3 + 4aβ4 − 2aβ2λ+ 2λ

λ

)]
,

g20 =
γ

λ

[
β2√a(2aβ4 − 2aβ2λ+ 4β2 − 7λ)√

λ

−i

(
2aβ6λ− aβ4λ2 + β4λ3 − 4aβ4 + 6aβ2λ+ 2λ

λ

)]
,

h11 = −2γβ2√a(aβ6 − aβ4λ+ β2λ− 1)√
λ

,

h20 =
γ√
λ

[
2β2√a(aβ6 − aβ4λ− β2λ+ 1) + i

(
2β4(a2β4 − a2β2λ+ λ2)√

λ

)]
,

w11 =
β2

2
h11,

w20 =
β2(1− iβ2

√
aλ)

2(1 + aλβ4)
h20,

G10 = −γ
√
a(2aβ4 − 2β4λ− 2aβ2λ+ 5β2λ2 + 4β2 − 4λ)

λ2
√
λ

−

i

[
γ(aβ4λ3 + β4λ4 − 4aβ4λ+ 4aβ2λ2 + 8aβ2 − 8β2λ− 12aλ+ 12λ2)

2λ3

]
,

G01 =
γ
√
a(β4λ3 + 2aβ4 − 2β4λ− 2aβ2λ+ β2λ2 − 4β2 + 4λ)

λ2
√
λ

−

i

[
γ(aβ4λ3 − β4λ4 − 4aβ4λ+ 4aβ2λ2 − 8aβ2 + 8β2λ+ 4aλ− 4λ2)

2λ3

]
,

G21 = 0,

g21 = 2G10w11 +G01w20.



On the dynamics of a deformed version of the Shimizu-Morioka system 15

By using the same arguments and procedures as before, the stability of E+
1 is

analyzed. By the substitution

x = −X +

√
a

1− g

y = −Y

z = Z +
1

1− g

,

system (4) becomes (7). Therefore, we get the same first Lyapunov coefficient.

Taking into account the sign of l1(0), we obtain (ii) and the last assertion of
(iii), which finishes the proof.

4 Chaotic behavior

In this section, computer simulations point out the chaotic behavior of the system
(4). In addition, evolutions of the largest Lyapunov exponent and the Kaplan - York
dimension of the system (4) are analyzed.

Following [42], recall that the signs of the Lyapunov exponents give a qualitative
picture of the dynamics of a system. The sum of the three Lyapunov exponents of
a three-dimensional continuous dissipative dynamical system is negative, and conse-
quently at least one Lyapunov exponent is negative. A positive Lyapunov exponent
of a bounded attractor indicates the exponential expansion of the trajectory, hence
”the system experiences repeated stretching and folding”, which leads to a strange
attractor.

The Lyapunov exponents µ1, µ2, µ3 constitute the Lyapunov exponent spectrum,
and their signs form the symbolic Lyapunov spectrum. For example, if µ1 > 0, µ2 =
0, µ3 < 0, then the corresponding element of the symbolic Lyapunov spectrum is the
triple (+, 0,−). ”In a three-dimensional continuous dissipative dynamical system the
only possible spectra, and the attractors they describe, are as follows: (+, 0,−), a
strange attractor; (0, 0,−), a two-torus; (0,−,−), a limit cycle; and (−,−,−), a
fixed point.” [42]

In the sequel, we explore the variation of the largest Lyapunov exponent.

Consider the parameters a and λ fixed, namely a = 0.45, λ = 0.75. Using E&F
Chaos program [5], in Figure 4, the variation of the largest Lyapunov exponent with
respect to parameter g is presented. We can also see that the maximum value for
the largest Lyapunov exponent is obtained for g = 0.92.

Now, we set the parameters λ = 0.75 and g = 0.92. In Figure 5, the variation of
the largest Lyapunov exponent with respect to parameter λ is shown. In this case,
the maximum value for the largest Lyapunov exponent is obtained for a = 0.34.
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Figure 4: The variation of the largest Lyapunov exponent with respect to the parameter g
(a = 0.45, λ = 0.75, x0 = 0.01, y0 = 0.01, z0 = 0.01).

Figure 5: The variation of the largest Lyapunov exponent with respect to the parameter a
(λ = 0.75, g = 0.92, x0 = 0.01, y0 = 0.01, z0 = 0.01).

Figure 6: The variation of the largest Lyapunov exponent with respect to the parameter λ
(a = 0.45, g = 0.92, x0 = 0.01, y0 = 0.01, z0 = 0.01).
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Finally, in Figure 6, for a = 0.45 and g = 0.92, the variation of the largest
Lyapunov exponent with respect to parameter λ is presented. In the last simulation,
the maximum value for the largest Lyapunov exponent is obtained for λ = 0.77.

In the following we compare some chaotic indicators of the Shimizu-Morioka
system and its deformation (4).

Recall that Shimizu-Morioka system (1) is chaotic for a = 0.45, λ = 0.75 (see,
e.g., [33]). The corresponding attractor is drawn in Fig. 15(a).

Using ”LCE package for Mathematica” [32], setting a = 0.45, λ = 0.75 and g = 0
in system (4) with the initial conditions x0 = 0.01, y0 = 0.01, z0 = 0.01, the largest
Lyapunov exponent is µ1 = 0.0637008. In addition, the other Lyapunov exponents
are µ2 ≃ 0, µ3 = −1.264.

Setting a = 0.34, λ = 0.77 and g = 0.92 in system (4) with the initial conditions
x0 = 0.01, y0 = 0.01, z0 = 0.01, the largest Lyapunov exponent is µ1 = 0.407006.
The other Lyapunov exponents are µ2 ≃ 0, µ3 = −1.51811.

The Lyapunov dimension or Kaplan–Yorke dimension of a chaotic attractor of a
three-dimensional system is

DL = 2 +
µ1 + µ2

|µ3|
.

Therefore DL = 2.05064 for a = 0.45, λ = 0.75, g = 0 and DL = 2.26883 for
a = 0.34, λ = 0.77, g = 0.92

In Figure 7, the convergence plot of the Lyapunov spectrum for system (4) is
presented.

Using Matlab R2023a, the time series (Fig. 8), the trajectory of the system (4)
for a = 0.34, λ = 0.77, g = 0.92 (Fig. 9) and its projections on the coordinates
planes (Fig. 10) are shown.
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Figure 7: Convergence plot of the Lyapunov spectrum for system (4) (a = 0.34, λ = 0.77, g = 0.92,
x0 = 0.01, y0 = 0.01, z0 = 0.01).
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Figure 8: The time series of a chaotic attractor of system (4) for a = 0.34, λ = 0.77, g = 0.92,
with the initial conditions x0 = 0.01, y0 = 0.01, z0 = 0.01.

Figure 9: A chaotic attractor of system (4) for a = 0.34, λ = 0.77, g = 0.92, with the initial
conditions x0 = 0.01, y0 = 0.01, z0 = 0.01.

5 Numerical simulations

In this section, using Matlab R2023a, we give some numerical simulations of the
trajectory of system (4) (see Figures 11-16).

We start with a route of chaos of the considered system in the case a = 0.8,
λ = 0.934, and g varying between −0.8 and 0.9. An asymptotically stable attractor



On the dynamics of a deformed version of the Shimizu-Morioka system 19

(a) projection on the x-y plane

(b) projection on the x-z plane

(c) projection on the y-z plane

Figure 10: The projections of the chaotic attractor of system (4) on the coordinates planes
(a = 0.34, λ = 0.77, g = 0.92, x0 = 0.01, y0 = 0.01, z0 = 0.01).
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(Fig. 11(a)) turns into a limit cycle (Fig. 11(b)), which is stable (Fig. 11(c)). This
limit cycle deforms into a homoclinic orbit (Fig. 11(d)). Because system (4) has a
rotational symmetry around Oz−axis, there is in fact a pair of homoclinic orbits,
which give rise to a symmetric limit cycle (Fig. 11(e)), which is also stable (Fig.
11(f)). Note that these homoclinic orbits (in the case g = 0) were reported in [33].
The moment of the appearance of a strange attractor is shown in Fig. 12(b). The
evolution of this attractor is presented in Figures 12(c)-12(h).

(a) g = −0.8 (b) g = −0.2349

(c) g = −0.1 (d) g = 0

(e) g = 0.1 (f) g = 0.3

Figure 11: A deformation of system (4) (a = 0.8, λ = 0.934, x0 = 0.01, y0 = 0.01, z0 = 0.01).
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(a) g = 0.38 (b) g = 0.383

(c) g = 0.5 (d) g = 0.7

(e) g = 0.798 (f) g = 0.799

(g) g = 0.85 (h) g = 0.9

Figure 12: The continuation of Fig. 11: A deformation of system (4) (a = 0.8, λ = 0.934,
x0 = 0.01, y0 = 0.01, z0 = 0.01).
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Another transition between an asymptotically stable attractor and a strange
attractor is presented in Figures 13 and 14. We set a = 0.14, λ = 2, and vary g
between 0 and 0.9. For g = 0 system (4) has an asymptotically stable attractor (E−

1 ,
Fig. 13(a)) and before g = 4 it turns into another asymptotically stable attractor
(E+

1 , Fig. 13(b)). Finally, another strange attractor is point out (Fig. 14(h)).
In Fig. 15, we present the transition of the Shimizu-Morioka chaotic attractor

(Fig. 15(a)), which looks as the Lorenz attractor [27], to the new chaotic attractor
(4) (Fig. 15(e)), which looks as the Chen attractor [4].

(a) g = 0 (b) g = 0.4

(c) g = 0.5 (d) g = 0.5327

(e) g = 0.56 (f) g = 0.57

Figure 13: A deformation of system (4) (a = 0.14, λ = 2, x0 = 0.01, y0 = 0.01, z0 = 0.01).
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(a) g = 0.58 (b) g = 0.59

(c) g = 0.6 (d) g = 0.65

(e) g = 0.7 (f) g = 0.75

(g) g = 0.8 (h) g = 0.9

Figure 14: The continuation of Fig. 13: A deformation of system (4) (a = 0.14, λ = 2, x0 = 0.01,
y0 = 0.01, z0 = 0.01).
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(a) g = 0

(b) g = 0.2 (c) g = 0.4

(d) g = 0.6 (e) g = 0.8

(f) g = 0.9

Figure 15: Deformations of the Shimizu-Morioka chaotic attractor (4) (a = 0.45, λ = 0.75,
x0 = 0.01, y0 = 0.01, z0 = 0.01).
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(a) g = 0 (b) g = 0.2

(c) g = 0.4 (d) g = 0.6

(e) g = 0.8 (f) g = 0.9

Figure 16: A chaotic deformation of system (4) for (a) g = 0; (b) g = 0.2; (c) g = 0.4; (d) g = 0.6;
(e) g = 0.8; (f) g = 0.9. (a = 0.01, λ = 1.4, x0 = 0.01, y0 = 0.01, z0 = 0.01).
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[15] C. Lăzureanu, Hamilton-Poisson Realizations of the Integrable Deformations of
the Rikitake System, Advances in Mathematical Physics, 2017, (2017), 4596951.
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Abstract

The purpose of this paper is to analyzed a mathematical model of three
ordinary differential equations which describe the unemployment incorporating
a discrete time delay and optimal control. The model’s investigation focuses
on assessing the stability analysis of the equilibrium point as well as the op-
timal control. Theoretical statements are supported by conducting numerical
simulations. 2

1 Introduction

Comprehending the dynamic nature of social issues is crucial in developing effective solutions, par-
ticularly in the case of unemployment, which is a pervasive concern impacting individuals worldwide.
As an essential indicator of a nation’s economic status, gaining a comprehensive understanding of
this issue is of paramount importance.

In recent years, researchers have explored mathematical models to study unemployment, as doc-
umented in various works such as Nikolopoulos and Tzanetis (1999) [15], Misra and Singh (2013)
[13], Misra et al. (2017) [14], Pathan and Singh (2017) [16] and Harding (2018) [6]. Initially,
Nikolopoulos and Tzanetis (1999) proposed a model, which was further developed by Misra and
Singh (2011) to investigate unemployment using three variables. Subsequently, in Misra and Singh
(2013), they incorporated time delay and employed the theory of delay differential equations to ana-
lyze the model. Building on this concept, Harding and Neamtu (2018) formulated an unemployment
model with distributed time delay [6].

Furthermore, prior research in the field has delved into various aspects of three-dimensional
unemployment models, encompassing investigations involving discrete time delay [8], distributed
time delay [9], and even scenarios with two distinct distributed time delays [18]. In this work is
analyzed the model [8] by introducing the optimal control strategy.

These existing mathematical models offer novel approaches to analyze unemployment by lever-
aging historical data on state variables, which serves as the foundation for the current research
work.

2MSC(2010): : 34D23, 91B39, 91B55
Keywords and phrases: unemployment model, stability properties, optimal control.
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2 The mathematical model

In this study is analyzed the mathematical model of unemployment introduced in [8], incorporating
optimal control technique. The paper considers the following aspects:

• Three variables are taken into account: U represents the total number of unemployed in-
dividuals, E denotes the total number of employed individuals, and V represents the total
number of newly created jobs by the government and private sector.

• The model assumes that all individuals entering the system at time t possess the necessary
qualifications for any available job.

• The number of unemployed individuals increases steadily at a constant rate, denoted as A.

• Both the government and private sector exert efforts to generate new job openings, with
the number of job opportunities being directly proportional to the number of unemployed
individuals.

• It is also assumed that if individuals are fired or voluntarily leave their jobs within the
employed group, they transition to the unemployed group.

Based on the previously mentioned considerations, the mathematical model described in [8] is:
U̇(t) = A− [a1V (t) + a2]U(t) + a3E(t)− b1U(t),

Ė(t) = [a1V (t) + a2]U(t)− a3E(t)− b2E(t),

V̇ (t) = a4U(t− τ)− b3V (t),

(1)

with the parameters:

• a1 - the employment rate pertaining to the newly generated job opportunities by both the
government and private sector, specifically aimed at the unemployed individuals;

• a2 - the employment rate for the unemployed individuals in relation to the existing job
positions;

• a3 - the rate at which individuals transition from the employed category to the unemployed
category due to being terminated or voluntarily leaving their jobs;

• b1 - the death rate and the migration rate of unemployed persons;

• b2 - the rate of death, retirement and migration of employed persons;

• a4 - the rate at which new job vacancies are being created;

• b3 - the diminution of the new vacancies created by gouverment and private sectors;

• τ - discrete time delay

The first result for positivity and boundedness of the solution of the system (1) is proved in [8].

Theorem 2.1. The set,

Ω =

{
(U,E, V ) ∈ R3 : 0 < U + E <

A

δ
, 0 < V <

a4A

δb3

}
,

where δ = min(b1, b2) is a region of attraction for the system (1) and it attracts all the solutions
initiating from the interior of the open positive octant of R3.
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3 Equilibrium analysis

By solving the system presented as follows:
A− (a1V + a2)U + a3E − b1U = 0

(a1V + a2)U − a3E − b2E = 0

a4U − b3V = 0

(2)

the unique positive equilibrium of the model (1) is determined, which is denoted as S+. The
equilibrium is given by:

S+ := (U0, E0, V0) =

(
U0,

U0(a1a4U0 + a2b3)

b3(a3 + b2)
,
a4U0

b3

)
.

4 Local stability analysis

The characteristic equation for system (1) is:

a1a4U0e
−λτ (λ+ b2) + λ3 + C2λ

2 + C1λ+ C0 = 0, (3)

where the coefficients

C2 = a1V0 + a2 + a3 + b1 + b2 + b3

C1 = a1b2V0 + a1b3V0 + a2b3 + a2b2 + a3b1 + b1b2 + b1b3 + a3b3 + b2b3

C0 = a1b2b3V0 + a2b2b3 + b1b3a3 + b1b2b3

are positive.

Denoting with P (λ) = λ3 + C2λ
2 + C1λ+ C0, the equation (3) becomes:

a1a4U0e
−λτ (λ+ b2) + P (λ) = 0 (4)

In [8], the following results are proven:

Theorem 4.1. In the non-delayed case, the equilibrium point of the system (1) S+ is locally asymp-
totically stable.

Lemma 4.2. Considering τ > 0 as bifurcation parameter, system (1) does not undergo a Hopf
bifurcation in a neighborhood of the positive equilibrium S+, for any value of the time delay.

The previous lemma implies the following important result:

Theorem 4.3. The positive equilibrium S+ of system (1) is locally asymptotically stable for any
value of the time delay τ ≥ 0.

5 Optimal control strategy

In this section, the necessary and sufficient condition for the optimal control strategy to be presented
is outlined.

Firstly, it is considered tf and ∆ as constants. Then, it is defined an admissible control set
Uad = {u(t) which is measurable, 0 ≤ u(t) ≤ ∆, t ∈ [0, tf ]}. The variable u(t) in this context
is referred to as a control variable, representing the strategy employed to decrease the number of
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unemployed individuals. Based on these facts, it is analyzed an optimal control problem aimed at
minimizing the objective functional

J(u) =

∫ tf

0

[U(t) +
ϵ

2
u2(t)]dt (5)

under the constraint of:
U̇(t) = A− [a1V (t) + a2]U(t) + a3E(t)− b1U(t)− u(t)U(t),

Ė(t) = [a1V (t) + a2]U(t)− a3E(t)− b2E(t) + ω(t)u(t)U(t),

V̇ (t) = a4U(t− τ)− b3V (t)− ω(t)u(t)U(t) + u(t)U(t),

(6)

To ensure a balanced magnitude of the control variable, denoted as u(t), a small positive
constant ϵ is introduced. The introduction of this constant accounts for the squared control variable,
which signifies the extent of the size effects of the control.

To obtain an optimal solution, the initial step involves deriving the Lagrangian and Hamiltonian
for the optimal control problem stated in equations (5) and (6). Specifically, the Lagrangian of the
optimal problem can be represented in the following manner:

L̃(U, u) = U(t) +
ϵ

2
u2(t). (7)

In order to identify the optimal control function for the provided optimal control problem, we define
the corresponding Hamiltonian as follows:

H(U,E, V, u, λ1, λ2, λ3, t) = L̃(U, u) + λ1(t)U̇(t) + λ2(t)Ė(t) + λ3(t)V̇ (t), (8)

where λ1, λ2, λ3 are the adjoint functions to be determined suitably. Firstly, we establish the
existence of a solution for the control system (6).

As in [3], we have:

Theorem 5.1. There exists an optimal control u∗(t) such that J(u∗(t)) = min J(u(t)), under the
constraint of the control system stated in (6), along with the given initial conditions.

Proof. It can observed:

1. There is a nonempty set of control and corresponding state variables.

2. The admissible set Uad is both convex and closed.

3. The right-hand side of the state system (6) is bounded by a linear function involving the
state variables.

4. The function L̃(U, u) = U + ϵ
2
u2 is concave when considering the admissible control set Uad.

5. There exists a constant ρ > 1, η1 > 0 and η2 such that L̃(U, u) ≥ η1(|u|)ρ + η2. Specifically,
we can choose η1 = ϵ

2
and η2 represents the lower bound on U , which is similar to the lower

bound mentioned in [7]. Thus, it can be directly obtain the result from [2], completing the
proof.

Moving forward, a necessary condition for the optimal control strategy is derived using Pon-
tryagin’s Maximum Principle [4].

Theorem 5.2. When considering an optimal control variable u∗(t) and the corresponding solution
U∗(t), E∗(t), V ∗(t) of state system (6), there exists adjoint variables λ1(t), λ2(t) and λ3(t) that
satisfy
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λ̇1(t) = −1 + [a1V

∗(t) + a2 + b1 + u∗(t)]λ1(t)− [a1V
∗(t) + a2 + ωu∗(t)]λ2(t)−

− (1− ω)u∗(t)λ3(t)− χ[0,tf−τ ](t)a4λ3(t+ τ),

λ̇2(t) = −a3λ1(t) + (a3 + b2)λ2(t),

λ̇3(t) = a1U
∗(t)λ1(t)− a1U

∗(t)λ2(t) + b3λ3(t),

(9)

with transversality conditions

λi(tf ) = 0, i = 1, 2, 3.

Here χ[0,tf−τ ](t) = 1 if t ∈ [0, tf − τ ]. Otherwise χ[0,tf−τ ](t) = 0. Furthermore, the optimal
control u∗(t) is given

u∗(t) = min{max(0, R),∆}, (10)

where

R =
U(t+ 1)

ϵ
[λ1(t)− ωλ2(t)− (1− ω)λ3(t)].

Proof. To derive the adjoint equations and the transversality conditions, we employ the Hamiltonian
stated in equation (8). By differentiating the Hamiltonian (8), we acquire the adjoint system in the
following manner: 

λ̇1(t) = − ∂H
∂U

(t)− χ[0,tf−τ ](t)
∂H
∂Uτ

(t+ τ),

λ̇2(t) = − ∂H
∂E

(t)− χ[0,tf−τ ](t)
∂H
∂Eτ

(t+ τ),

λ̇3(t) = − ∂H
∂V

(t)− χ[0,tf−τ ](t)
∂H
∂Vτ

(t+ τ).

(11)

Hence, the adjoint system can be reformulated as system (9). According to the optimal conditions,
we obtain the following:

∂H

∂u
(t)|u=u∗(t) = −ϵu∗(t) + ωλ1(t)V

∗(t) + (1− ω)λ2(t)V
∗(t)− λ3(t)V

∗(t) = 0. (12)

Consequently, it can be deduced that u∗(t) = min{max(0, R),∆}. By considering the characteris-
tics of the admissible control set Uad, equation (10) can be obtained and the proof is finalized.

As a result, we have successfully derived the following optimality system:

λ̇1(t) = −1 + [a1V
∗(t) + a2 + b1 + u∗(t)]λ1(t)− [a1V

∗(t) + a2 + ωu∗(t)]λ2(t)−
− (1− ω)u∗(t)λ3(t)− χ[0,tf−τ ](t)a4λ3(t+ τ),

λ̇2(t) = −a3λ1(t) + (a3 + b2)λ2(t),

λ̇3(t) = a1U
∗(t)λ1(t)− a1U

∗(t)λ2(t) + b3λ3(t),

u∗(t) = min{max(0, R),∆}, R = U(t+1)
ϵ

[λ1(t)− ωλ2(t)− (1− ω)λ3(t)],
λi(tf ) = 0, i = 1, 2, 3.

(13)

and 
U̇∗(t) = A− [a1V

∗(t) + a2]U
∗(t) + a3E

∗(t)− b1U
∗(t)− u∗(t)U∗(t),

Ė∗(t) = [a1V
∗(t) + a2]U

∗(t)− a3E
∗(t)− b2E

∗(t) + ω(t)u∗(t)U∗(t),

V̇ ∗(t) = a4U
∗(t− τ)− b3V

∗(t)− ω(t)u∗(t)U∗(t) + u∗(t)U∗(t).

(14)

6 Numerical simulations

The system parameters for the numerical simulations are as follows: A is chosen as 5000, a1 is set
to 0.00002, a2 is set to 0.4, a3 is set to 0.01, a4 is set to 0.007, b1 = 0.04, b2 = 0.05, b3 = 0.05,
ω = 0.8, ∆ = 0.8, ϵ = 20000 and tf = 500.
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In the initial three instances illustrated in Figure 1, we plotted the evolution of individuals
who were unemployed, individuals who were employed, and the number of new jobs generated by
both the government and the private sector. These cases included scenarios involving constant
high control, optimal control and without control. Based on the findings from Figure 1, it can be
concluded that the implemented control measures have proven to be effective.

Figure 2 exhibits the collective evolution of the three variables U(t), E(t), and V (t), alongside
the control strategy.

Figure 3 describes the temporal evolution of the state variables U(t), E(t), and V (t) in the
absence of the delay and control. Additionally, the figure shows that the equilibrium point of the
initial system is asymptotically stable.

Figure 17: Evolution of state variables U(t), E(t) and V (t) of system (6) with
optimal control (red), with high control (red) and without control (blue).
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Figure 18: Evolution of state variables U(t) (blue), E(t) (yellow) and V (t) (black)
of system (6) with optimal control.
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Figure 19: Evolution of state variables U(t), E(t) and V (t) of system (1) without
delay and control.
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7 Conclusions

In this paper the model proposed in [8] which incorporates one discrete time delay was investigated.
Initially, the local stability results were presented, followed by a discussion on the optimal control.

In particular, this work represented the first instance in which an optimal control problem was
formulated for the controlled system (1). Theorems 5.1 and 5.2 present an optimal strategy aimed
at minimizing the overall count of unemployed individuals.

Furthermore, upon conducting numerical simulations, it becomes evident that it is reasonable
to deduce that the control strategy u∗ is, indeed, the optimal selection for minimizing the objective
function J(u). This study has the potential to provide a fresh outlook on the issue of unemployment
control, among other aspects.
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Abstract

Simulation currently affects our daily lives through our interactions with
the automotive industry, airlines, and entertainment. The use of simulation
in drug development is relatively new, but its usage is increasing in line with
the speed of modern computers. A well-known example of simulation in drug
development is molecular modeling. Another use of simulation that has re-
cently been observed in drug development is Monte Carlo simulation in clinical
studies. Monte Carlo simulation differs from traditional simulation in that the
model parameters are treated as stochastic or random variables rather than
fixed values. The purpose of this paper is to provide a brief introduction to
Monte Carlo simulation methods.

Computer simulation in the pharmaceutical industry is used in the discovery
of new drugs, optimization of chemical processes, and most recently, the design
of clinical trials. What most people consider ”simulation” are models that
build or design physical ”things”. Examples of this type of simulation include
the use of computer-aided design (CAD) technology in designing a commercial
product such as a car or an airplane, or molecular modeling of drug-receptor
interactions. Often, with this class of simulations, the term ”modeling” is used
interchangeably, such as molecular modeling. For our purposes, models will
be differentiated from simulations in that models are built upon data and look
back in time, while simulations are based on models and look forward in time.

3

1 Introduction

The purpose of this paper is not to review those simulations meant to mimic the real world and
build physical things, but rather to provide a brief introduction to the class of simulations that

3Mathematical Subject Classification (2020): {62-04, 62P10, 65C05}
Keywords and phrases: Monte Carlo simulation method, modeling, clinical studies
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utilize mathematical models of a system, which may include physical processes, events, or decision-
making processes, to describe the behavior of the system over long periods of time and incorporate
stochastic or random variability into the model. This class of simulation is used for decision-making,
understanding complex systems, and solving problems for which there is no closed-form solution. In
1979, the Society for Computer Simulation presented a framework for computer simulations (Fig.
1). In this framework, a problem from the real world is first identified and then converted into a
conceptual model, which, for our purposes, will be defined as an abstraction of a real system that
contains inputs and outputs, where the inputs of the model are predictive with the observed outputs.
Ideally, the model is defined using a mechanistic basis and validated using observational data, but
neither is necessarily required. Models have the advantage of allowing a better understanding of
processes and systems, enabling the user to manipulate inputs to examine outputs.

Fig. 1. Framework for computer simulation (modified by the Technical Committee of the
Society for Computer Simulation on Model Credibility).

Source: Society for Computer Simulation (SCS) Technical Committee on Model Credibility.
Terminology of model credibility. Simulation 1979 Mar: 103-4.

Models and, consequently, simulations can be further classified into discrete event simulations
or real-time simulations. Discrete event simulations model a system over time, where variables
change instantaneously at certain moments. An example of this is when the occurrence of an adverse
reaction happens when plasma concentrations reach a threshold limit. Real-time simulations, which
are often observed in clinical trial simulations, model systems where the system changes gradually
over time. Of course, some simulations can be a combination of discrete events and real-time
processes.

Monte Carlo simulation is the term applied to stochastic simulations, either discrete events, real-
time simulations, or a combination thereof, incorporating random variability into the model. The
term ”Monte Carlo” was first coined by Ulam and von Neumann during World War II and referred to
the games of chance in Monaco. The distribution is defined a priori (typically a normal distribution
with mean and variance). The Monte Carlo method efficiently simulates the model by repeatedly
sampling different random sets of values (inputs) from the parameter sampling distribution, resulting
in a set of possible outcomes (outputs).

2 Implementation of Monte Carlo Method in R

Modeling and simulation of clinical studies is a tool used by pharmaceutical companies and the
FDA to improve the efficiency of drug development. Monte Carlo Simulation is a modern and
computationally efficient algorithm [1]. Therefore, it is a brilliant technique in terms of patient
recruitment process and dose calculation in clinical design [2].

The purpose of this paper is to describe how Monte Carlo simulations have the task of evaluating
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parameter distributions and their applications in PROC MI.

Fig. 2. Clinical Trial Simulation (CTS) explores how different studies design performance to
detect the expected effect of the drug. Optimization includes dose regimen, patient profile, sample
size, study duration, and the current standard of care (SOC) for patients in the clinical study
simulation.

Source: Peter L. Bonate. Clinical Trial Simulation in Drug Development, 2000.
For the univariate data simulation in the data step, we will run R code with the loading of the

dataset that can be found at:
https://archive.ics.uci.edu/ml/machine-learning-databases/00537/

# load the dataset
sobar data <- read.csv(”C:/Users/LENOVO/Downloads/sobar-72.csv”)
# set the parameters for the simulation
N <- 10
NumSamples <- 1000
seed <- 12345
# select variable ”self control” from dataset
x <- sobar data$self control
install.packages(”dplyr”)
install.packages(”tidyr”)
install.packages(”officer”)
N <- 10
NumSamples <- 1000
mu <- 5
sigma <- 3
seed <- 12345
Simulation <- data.frame(SampleID = numeric(), x = numeric())
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for (SampleID in 1:NumSamples) {
sample data <- data.frame(x = rnorm(N, mean = mu, sd = sigma))
sample data$SampleID <- SampleID
Simulation <- rbind(Simulation, sample data)
}
library(dplyr)
library(tidyr)
OutStats <- Simulation %>%
group by(SampleID) %>%
summarise(SampleMean = mean(x), se = sd(x)/sqrt(N), tm = qt(0.975, N-1) * (sd(x)/sqrt(N)))

%>%
ungroup()
hist(OutStats$SampleMean)
coverage <- 0
for (i in 1:nrow(OutStats)) {
coverage <- coverage + OutStats[i,”SampleMean”]/NumSamples
}
cat(”Type of coverage: ”, class(coverage), ”\n”)
if (class(coverage) != ”numeric”) {
coverage <- as.numeric(coverage)
}
cat(”coverage=”, coverage, ”\n”)
cat(”END BY PROCESSING:”, format(Sys.time(), ”%Y-%m-%d %H:%M:%S”), ”\n”)
After running the code, I got the following output:

This code aims to perform a simulation of the distribution for the variable ”self control” from
a dataset named ”sobar-72.csv”. Specifically, the code does the following: loads the dataset ”sobar-
72.csv” using ‘read.csv‘; sets simulation parameters such as the number of samples (‘NumSamples‘)
and the number of observations in each sample (‘N‘); generates a simulation of a normal distribution
with specified mean (‘mu‘) and standard deviation (‘sigma‘) using the ‘rnorm‘ function in a ‘for‘ loop
with ‘NumSamples‘ iterations; calculates important statistics for each generated sample, including
the mean (‘SampleMean‘), standard error (‘se‘), and upper quantile of the 95% confidence interval
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(‘tm‘) using ‘group by‘, ‘summarise‘, and ‘ungroup‘ from the ‘dplyr‘ package; plots a histogram of
the sample means (‘SampleMean‘); calculates the coverage of the 95% confidence interval for the
distribution of sample means and displays it using the ‘cat‘ function; displays the end time of the
process using ‘format(Sys.time(), ”%Y-%m-%d %H:%M:%S”)‘.

We obtained a coverage value of approximately 5, which indicates that the 95% confidence
interval for the sample mean covers the true mean value with a probability of approximately 95%
for each sample. Additionally, we can add the ggplot2 library and create a histogram plot for the
distribution of simulated sample means. We have also specified labels for the x and y axes.

Display the histogram of the sample means distribution
ggplot(OutStats, aes(x = SampleMean)) +
geom histogram(binwidth = 0.5, fill = ”cornflowerblue”, color = ”black”) +
xlab(”Sample Mean”) +
ylab(”Number of Samples”)
Furthermore, I have created a code that creates a Shiny application that allows the user to

simulate data based on the chosen distribution and analyze the sensitivity of the simulated results.
The user can select the distribution, sample size, and the mu and sigma parameters, and then can
view the visualization and results in an interactive table. Furthermore, I have created a code that
creates a Shiny application that allows the user to simulate data based on the chosen distribution
and analyze the sensitivity of the simulated results. The user can select the distribution, sample
size, and the mu and sigma parameters, and then can view the visualization and results in an
interactive table.

# Install and load required packages
packages <- c(”dplyr”, ”tidyr”, ”ggplot2”, ”shiny”, ”DT”, ”rmarkdown”)
install.packages(packages, dependencies = TRUE)
sapply(packages, library, character.only = TRUE)
# load the dataset
sobar data <- read.csv(”C:/Users/LENOVO/Downloads/sobar-72.csv”)
# Define variables for mu and sigma
mu <- 5
sigma <- 3
# set the parameters for the simulation
N <- 10
NumSamples <- 1000
seed <- 12345
# select variable ”self control” from dataset
x <- sobar data$self control
# Simulate data with the option to choose the distribution
simulate data <- function(N, NumSamples, mu, sigma, distribution) {
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Simulation <- data.frame(SampleID = numeric(), x = numeric())
for (SampleID in 1:NumSamples) {
if (distribution == ”normal”) {
sample data <- data.frame(x = rnorm(N, mean = mu, sd = sigma))
} else if (distribution == ”exponentially”) {
sample data <- data.frame(x = rexp(N, rate = 1/mu))
} else if (distribution == ”uniform”) {
sample data <- data.frame(x = runif(N, min = mu - sigma, max = mu + sigma))
}
sample data$SampleID <- SampleID
Simulation <- rbind(Simulation, sample data)
}
return(Simulation)
}
# Data validation
validate data <- function(data) {
# We can add checks for missing data or outliers here
# For example: if (any(is.na(data$x))) { ... }
return(data)
}
# Sensitivity analysis
sensitivity analysis <- function(N, NumSamples, mu, sigma, distribution) {
results <- list()
for (i in 1:10) { # Performs the analysis for 10 sets of parameters
simulated data <- simulate data(N, NumSamples, mu, sigma, distribution)
validated data <- validate data(simulated data)
OutStats <- validated data %>%
group by(SampleID) %>%
summarise(SampleMean = mean(x), se = sd(x)/sqrt(N), tm = qt(0.975, N-1) * (sd(x)/sqrt(N)))

%>%
ungroup()
coverage <- sum(OutStats$SampleMean)/NumSamples
results[[i]] <- list(params = list(N = N, NumSamples = NumSamples, mu = mu, sigma =

sigma),
coverage = coverage)
}
return(results)
}
# UI for Shiny application
ui <- fluidPage(
titlePanel(”Simulation and Data Analysis ”),
sidebarLayout(
sidebarPanel(
selectInput(”distribution”, ” Select Distribution:”,
choices = c(”Normal” = ”normal”, ”Exponentially” = ”exponential”, ”Uniform” = ”uni-

form”)),
sliderInput(”N”, ” Size Sample:”, min = 5, max = 50, value = N),
numericInput(”mu”, ” Average:”, value = mu),
numericInput(”sigma”, ” Standard Deviation:”, value = sigma),
actionButton(”simulateButton”, ” Simulates”)
),
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mainPanel(

tabsetPanel(

tabPanel(”Views ”, plotOutput(”histPlot”)),

tabPanel(”Result”, dataTableOutput(”summaryTable”))

)

)

)

)

# Server for Shiny application

server <- function(input, output) {
data <- eventReactive(input$simulateButton, {
simulate data(input$N, NumSamples, input$mu, input$sigma, input$distribution)
})
output$histPlot <- renderPlot({
ggplot(data(), aes(x = x)) +

geom histogram(binwidth = 0.5, fill = ”lightblue”, color = ”black”) +

geom vline(aes(xintercept = mean(x)), color = ”red”, linetype = ”dashed”, size = 1) +

labs(title = ” Distribution of Calculated Average Values”,

x = ” Average value”,

y = ” Number of Samples”)

})
output$summaryTable <- renderDataTable({
OutStats <- data() %>%

group by(SampleID) %>%

summarise(SampleMean = mean(x), se = sd(x)/sqrt(N), tm = qt(0.975, N-1) * (sd(x)/sqrt(N)))
%>%

ungroup()

datatable(OutStats)

})
}
# Run the Shiny application

shinyApp(ui = ui, server = server)
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In addition, we can modify the code for the Shiny application in R, following these steps:

1. Installation and loading of necessary packages.
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2. Loading a dataset from the ”sobar-72.csv” file and displaying the data.
3. Defining parameters for the simulation, such as mean, standard deviation, and sample size.
4. Simulating data based on the selected column from the dataset.
5. Creating a Shiny interface to allow the user to configure the simulation.
6. Defining a Shiny server that generates visualizations and results, including a histogram,

result table, and confidence interval.
7. The ability to compare distributions and perform statistical tests (requires additional im-

plementation).
8. Running the Shiny application for interactive exploration of simulations and results.

3 Missing Data Imputation using The MI Procedure

Missing values pose a problem in a substantial number of clinical analysis studies. Some subjects
drop out of the study. Some data is missing due to the patient’s illness or death, invalid measure-
ments, or forgetfulness[3]. A statistical analysis can be biased if incomplete cases are excluded from
the analysis due to the intent-to-treat (ITT) principle. The MI procedure employs the MCMC
method for imputing missing data, simulating the parameters of the model, and diagnosing the
model[4].

We will run R code with the loading of the dataset, which can be found at:
https://archive.ics.uci.edu/ml/machine-learning-databases/00537/
# Variable Definition
seed <- 54321
NumSamples <- 1000
mu <- 5
sigma <- 2
# Setting the seed for the random number generator
set.seed(seed)
# Simulating univariate data
x <- rnorm(n = NumSamples, mean = mu, sd = sigma)
# Loading the ”mice” package
library(mice)
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# Loading the ”sobar” dataset

# Please load the dataset

sobar data <- read.csv(”C:/Users/LENOVO/Downloads/sobar-72.csv”)

# Missing data imputation

imp <- mice(sobar data, m = 1, maxit = 1000, meth = ”monotone”, seed = seed)

# Displaying the first 6 rows of the imputed dataset

head(complete(imp), 6)

Following the execution of the code, the result will display the first 6 rows of the ‘sobar data‘
dataset with the missing values imputed using the ”monotone” method with the help of the ‘mice‘
package. This is achieved by applying the ‘complete()‘ function to the ‘imp‘ variable, which contains
the dataset filled with imputed values.

Additionally, in the above code, we can add plotting the probability density as follows:

# Plotting the probability density

dens <- density(x)

# Displaying the plot

plot(dens, main = ”Probability Density”, xlab = ”Values”, ylab = ”Probability”)
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The displayed plot presents the probability density of the values in the ‘x‘ vector. The horizontal
axis represents the values in the ‘x‘ vector, while the vertical axis represents the probability density
for those values. In this case, the plot shows that the probability density is highest around the value
5, indicating that the values in the ‘x‘ vector are more likely to be closer to this value. Additionally,
the probability density is lower around the extreme values, indicating that extreme values are less
likely to occur in the ‘x‘ vector.

This code will perform a t-test to check if the mean of the data in x is different from 5.0 and
will display the test results along with an interpretation based on the obtained p-value. We can
adjust the value of mu and the significance level (0.05 in this example) as needed.

# Hypothesis test for the mean of the data in x

hyp test <- t.test(x, mu = 5)

# Displaying the test results

cat(”Hypothesis test results:\n”)
print(hyp test)

# Displaying the interpretation of the results

cat(”\nInterpretation of the results:\n”)
if (hyp test$p.value < 0.05) {
cat(”The p-value is less than 0.05, so we reject the null hypothesis.\n”)
cat(”The mean of the data in x is different from 5.0.\n”)
} else {
cat(”The p-value is greater than or equal to 0.05, so we cannot reject the null hypothesis.\n”)
cat(”There is not enough evidence to suggest that the mean of the data in x is different from

5.0.\n”)
}
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4 Conclusions

The Monte Carlo method is a technique used to simulate the behavior of complex systems by
generating repeated random values. This method can be used in medicine to estimate the probability
of success of a medical procedure, optimize the design and dosage of medications, or evaluate the
impact of a new treatment on patients.

Regarding applications in medicine, the Monte Carlo method can be used to simulate treatments
and their effects on patients, allowing physicians to better understand the risks and benefits of a
particular treatment before administering it to patients. Additionally, this method can be used in
the design and testing of new medical devices, such as implants or diagnostic equipment.

Although the Monte Carlo method is very powerful and useful in medicine, there are also some
challenges and limitations in its use. For example, in the case of simulating treatments and medical
procedures, it can be influenced by individual variations among patients and complex interactions
between different elements of the system.

Moreover, solid programming and mathematical modeling expertise are required to successfully
implement the Monte Carlo method in medical research.
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Therefore, it is important for researchers and physicians to consider these limitations and
collaborate with experts in the field of statistical methods and mathematical modeling to achieve
the best possible outcomes.

The Monte Carlo method is a powerful and versatile tool in the field of medicine, which can
help optimize processes and treatments, reduce risks, and improve the quality of patient care.

However, it is important to consider the limitations of this method and combine it with other
methods and technologies to ensure the best possible solution for each specific medical situation.

In conclusion, I would like to thank my supervisor, Associate Professor Dr. Negrea Romeo, as
well as my family for all the support they have provided.
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APPLICATION OF R SOFTWARE TO THE DATA
OF THE COMPARATIVE STUDY INTRALESIONAL

IMMUNOTHERAPY AND CRYOTHERAPY
IN THE TREATMENT OF WARTY LESIONS

Emilia SOUCA

Abstract

For the R software application we have taken two datasets “Immunother-
apy” and “Cryotherapy” obtained in comparative study between Intralesional
Immunotherapy and Cryotherapy (2) from the database
https://achieve.ics.uci.edu/datasets.php. This study was conducted in
dermatology clinic “Ghaem Hospital”, Mashad, Iran. The study enrolled 180
patients diagnosed with verrucous lesions. The selection of the patients for
the application of the treatment method was randomized. The patients were
included in two treatment groups in equal number, 90 patients received intrale-
sional immunotherapy treatment with Candida antigen, 90 patients received
cryotherapy treatment using liquid nitrogen. In this article the data obtained
from this study are analysed as a single dataset by aggregating the two data
sets, the study authors analysing them individually. Also the statistical anal-
ysis was performed using R software unlike the study authors who performed
the analysis using a rule-based fuzzy logic system. The results of the statistical
analysis, by evaluating the predicted probabilities, showed that Immunotherapy
is more effective than Cryotherpy in treating warty lesions. The values of these
probabilities are 0.60 for Cryotherapy treatment and 0.89 for Immunotherapy
treatment.

4

1 Introduction

Warty lesions are the most common clinical manifestation of human papillomavirus (HPV) infection
of the skin and mucous membranes, and are most common on the hands, feet, face and genitals.

4Mathematical Subject Classification (2020): {62-04, 62P10, 62J05}
Keywords and phrases: multiple linear regression, Wald test, Akaike’s Informational Criterion
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These benign lesions have different clinical forms. Despite the various therapeutic modalities used:
topical caustic acid, cryotherapy, electrocautery, surgical removal, laser ablation, intralesional in-
jection of bleomycin, Candida albicans, purified protein derivatives; there is still no single method
that can be used as an approved treatment(1). Liquid nitrogen cryotherapy is a favourable and
alternative treatment, leading to treatment of up 50%– 70% of lesions after three or four session
(1). Intralesional immunotherapy is another current treatment that stimulates the immune sistem
to recognise the Candida antigen through the delayed hypersensitivity reaction and subsequently
eliminate HPV (1).

The clinical study from which these data were obtained was a comparative analysis of in-
tralesional immunotherapy with candida antigen and cryotherapy with liquid nitrogen. The study
included 180 patients with common and plantar warty lesions. The two treatment methods repre-
sent two of the most effective therapeutic methods. Cryotherapy is the most widely used treatment
method. However the presence of side effect and the numerous treatment sessions require to achive
favourable results are not the best option. Immunotherapy is a newer therapeutic method, but it
also has the disadvantage found in cryotherapy treatment.

The 180 patients enrolled in the study were divided into two groups. The allocation of patients
to the therapeutic variant administred was randomised. The age of the patients ranged from 15
years, the minimum age for inclusion in the study, to 67 years.

Immunotherapy group Cryotherapy group

Number of patients 90 90
Age (avarage) 28.6 31.04
Gender: Male 41 47
Female 49 43
Type of injuries: -Verruca vulgaris 39 49

- Plantar warts 30 19
- Both Types 21 22

Table 1: Demographic characteristics of patients in both groups

Within this dataset, the response variable “Result of Treatment” is a binomial type 1 repre-
senting the positive response to the treatment applied, and 0 representing the negative response to
the treatment applied.

The predictor variables are represented by:

• Variable “age”

• Variable “sex” – categorial variable:

1-male
2- female

• Variable “Time” – time before treatment

• Variable “Number of Warts” – number of warts

• Variable “Type” – type of warty lesions: 1 – Verruca vulgaris

2 – Planarian warts
3 – Both types of injuries

• Variable “ Area” – the surface area of warty lesions

• Variable “ Treatment” – type of treatment administered:
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Figure 20: Histogram of the positive/ negative response to treatment
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1 – Immunotherapy

0 – Cryotherapy

2 Methods

2.1 Therapeutic methods

Group A received immunotherapy with intralesional injection of Candida antigen, while group B was
treated with liquid nitrogen cryotherapy(1). Patient characteristics were recorded in a questionnaire.
Warts were assumed to be in the shape of a circle or ellipse(1). To determine the size of the lesions,
the two largest perpendicular radii in each lesion were measured in millimetres, and the area was
calculated by multiplying the major and minor radii for each lesion, only the area of the largest
lesion was calculated(1). Patients were assessed at the beginning of the study, and the number and
size of lesions were also noted at each follow-up visit(1). During follow-up, therapeutic response
was considered “positive” if the treated lesion area showed a reduction in the size of the largest
lesion >75%(1). A “negative” response was considered when the size reduction was less than 25%
of the largest lesion(1). The criteria were applied to both groups. In the case of a partial response
(reduction in the size of the largest lesion between 25%- 75%), a negative response was considered(1).
Any adverse reactions and their severity were recorded for each patient during the treatment.

Group A

In group A, 0.1 milliliters(ml) of purified Candida 1/1000 antigen solution (Gree USA) was
injected intradermally into the flexor side of the left forearm. After 48-72 h, the existence of a
response and the size of the skin reaction were assessed. All enrolled patients showed a positive
reaction to Candida antigen. The dose of Candida antigen administration for intralesional im-
munotherapy was determined by the induration diameter after the test dose, as follows: 0.3 ml for
an induration diameter of 5-20 mm; 0.2 ml at an induration diameter of 20-40 mm; 0.1 ml for an
induration diameter greater than 40 mm. A total of three injections were administrated at 3-week
intervals either until the lesions were completely removed or for a maximum of three treatment
sessions(1).

Group B

In this group, all patients received cryotherapy once a week until complete elimination of the
lesions or for a maximum of 10 sessions. In each session, cryotherapy was done with liquid nitrogen,
using cotton probes, until 1-2 mm edge of the normal skin border around the lesion turned white
due to frostbite. After thawing, a second cycle was performed in the same way, each session. Any
adverse reactions were recorded(1).

2.2 Statistical methods

Model optimization was achived by applying the GLM function (R package “stats”)(5). The back-
ward method was used for optimization (3). Following the optimization, the important variables for
the prediction of the reaponse variable “Result of Treatment” are “age”, “Time” and “Treatment”.
The Wald test, the Nagelkerke R2 coefficient, the Brier score and Akaike’s information criterion were
used to evaluate the model obtained (3, 4). The values for Related Odds Ratio were calculated for
each of the three important predictor variables.

3 Results

3.1 Structure of the optimal model obtained:

Coefficients:
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Estimate Std. Error z value Pr(>|z|)
(Intercept)

6.48554 1.08357 5.985 2.16e-09 ***

age

-0.07580 0.01802 -4.206 2.60e-05 ***

Time

-0.51240 0.09111 -5.624 1.87e-08 ***

factor(Treatment)1

1.75576 0.45307 3.875 0.000107 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 230.51 on 179 degrees of freedom

Residual deviance: 138.22 on 176 degrees of freedom

AIC: 146.22

Logit(π)= ln ( π
1−π

) = 6.68554 + age* (-0.07580) + Time*(-0.51240) + 1.75576* (Treatment)

> wald.test(b=coef(glm5),Sigma=vcov(glm5),Terms=4)

3.2 Wald test

----------

Chi-squared test:

X2 = 15.0, df = 1, P(> X2) = 0.00011

A test value of 15.0 was obtained χ2 with a degree of freedom associated with P-value of 0.00011
indication that the overall effect of the variable “Treatment” is significant from statistically.

3.3 Coefficient Nagelkerke

> NagelkerkeR2(glm5)

$N
[1] 180

$R2

[1] 0.5554854

The R2 Nagelkerke Coefficient assessed the explanatory power of a model(4).

Brier score:

> B<-mean((therapy$pred-therapy$Result of Treatment)ˆ2)

> B

[1] 0.1111021

> p<-mean(therapy$Result of Treatment)

> p

[1] 0.6611111

> Bmax<-p/(1-p)

> Bmax

[1] 1.95082

> Brier<-1-B/Bmax

> Brier

[1] 0.9430485

The Brier score assesses the predictive power of a model(4).
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3.4 Akaike’s Informational Criterion ( AIC)

> mysteps<-step(glm5,Result of Treatment˜age+Time+factor(Treatment),family=

binomial,data=therapy)

Start: AIC=146.22

Result of Treatment ˜ age + Time + factor(Treatment)

Df Deviance AIC

<none> 138.22 146.22

- factor(Treatment) 1 155.27 161.27

- age 1 158.76 164.76

- Time 1 188.04 194.04

3.5 Odds Ratio

exp(cbind(OR=coef(glm5),confint(glm5)))

[]@ ¿p() * 1.0000@

OR 2.5 % 97.5 %
(Intercept)
655.5905125 95.3649233 6888.5416219
age
0.9270006 0.8930832 0.9589752
Time
0.5990590 0.4932874 0.7068576
factor(Treatment)1
5.7878504 2.4582063 14.6789690

3.6 Predicted probabilities by therapeutic option

> head(newdata1)

age Time Treatment TreatmentP

1 29.82222 7.448611 0 0.6006916

2 29.82222 7.448611 1 0.8969798

4 Conclusions

Applying the Wald Test (R package “aod”), a value of 15.0 was obtained for the χ2 with a degree
of freedom, associated with a P-value of 0.00011 which shows that the overall effect of the variable
“Treatment” is statistically significant. The R2 Nagelkerke Coefficient value is 0.555 (R package
“fmsb”), showing the strenght of the model in explaining the response variable. The adjusted
Brier score obtained 0.94, shows the predictive power of the model. By applying the step function
(R package “lmerTest”) it was observed that the value of the deviance and AIC increased in the
situation of removing the predictor variables from the obtained optimal model.

Since the confidence intervals for the Odds Ratio (OR) obtained by processing in R did not
include the value 1, it can be stated that for an increase of one unit (one year) in the variable “age”
the patients’ odds will be modified by a factor of 0.92 (decrease); for an increase of one unit (one
month) in the variable “Time” the patients’ odds will be modified by a factor of 0.599 (decrease).
Since the variable “Treatment” is a categorial variable, the reference category being Cryotherapy
for a chance ratio=5.78, the chances of a patients treated with Immunotherapy are changed by a
factor equal to this ratio (5.78) compare to the chances of the patients treated with Cryotharapy.



Application of R software in the treatment of warty lesions 57

The predicted probabilities obtained, with the variables “age” and “time” held constant (mean),
are 0.60 for the Cryotherapy treatment and 0.89 for the Immunotherapy treatment. The interpre-
tation of these results is: a patient aged 29.82 years (mean age) with a time of 7.45 months (mean)
before treatment for which the therapeutic option is Cryotherapy has a probability of a positive
response to treatment of 0.60; a patient with Immunotherapy treatment has a probability of a
positive response of 0.89. For an easier representation of the predicted probablilities according to
the type of treatment, age and time prior to treatment administration, the graphical methos (R
package “ggplot”) (5) was also used.

Fig. 2. Predicted probabilities by treatment type and age
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Fig 3. Predicted probabilities by treatment type and time to treatment

Following the statistical analysis, it can be stated that for the dataset presented, age has a
negative effect on treatment response for both treatment options: immunotherapy and cryotherapy.
Increasing the age of the patients leads to a decrease in the probability of cure. The same influnce is
also seen in the length of time prior to the treatment with a negative effect on treatment response,
increasing it decreases the probability of cure. In terms of type of treatment, Immunotherapy has
been shown to be more effective than Cryotherapy in treating warty lesions.

Khozeimeh F. et al performed statistical analysis of the data using a rule-based fuzzy logic
system. They found a better therapeutic effect of Immunotherapy compare to Cryotherapy and the
presence of a correlation between age and treatment response, but only in the Cryotherapy group.
Patients under 21 years of age showed a better response to cryotherapy treatment. Treatment
groups were evaluated individually. There was no mention of a relationship between time prior to
treatment and treatment response.

Consulting a dermatology specialist from Timisoara Dermatology Clinic confirmed the results
obtained by running the dataset in R.

Increasing age decreases the positive response to treatment. The time between the onset of
the symptoms and the administraton of treatment negatively influences the responce to treatment
because the lesion becomes deeper and more extensive with the passage of time. Intralesional
immunotherapy is more effective than cryotherapy because cryotherapy treatment only removes the
surface lesion without treating the human papillomavirus infection.
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SPECTRAL MAPPING THEOREM
FOR GENERALIZED EVOLUTION SEMIGROUPS

Nicolae LUPA

Abstract

In the paper [N. Lupa, L. H. Popescu, Generalized evolution semigroups
and general dichotomies, Results Math. 78 (2023): 112] the authors introduced
a special class of real semiflows in order to associate evolution semigroups to
not necessarily exponentially bounded evolution families, called as generalized
evolution semigroups. We give a direct proof of the spectral mapping theorem
for generalized evolution semigroups. 5

1 Introduction

The theory of evolution semigroups has a significant importance in the study of the asymptotic
behavior of their underlying evolution families. For instance, the exponential dichotomy of an
evolution family is equivalent to the hyperbolicity of its corresponding evolution semigroup (see
[4, Theorem VI.9.18]). The key to the proof lies in the spectral mapping theorem: the evolution
semigroup {Tt}t≥0 corresponding to an exponentially bounded evolution family satisfies the spectral
mapping formula

σ(Tt) \ {0} = etσ(G), t ≥ 0,

where G is the generator of the semigroup {Tt}t≥0. However, the classical theory of evolution
semigroups is too restrictive since it is only addresses to exponentially bounded evolution families.

In [5] the authors successfully constructed a framework for a generalization of the concept
of evolution semigroups associated to not necessarily exponentially bounded evolution families in
order to characterize a wide class of dichotomies, which can occur naturally for instance when all
Lyapunov exponents are infinite or they are all zero [2].

More precisely, it is proved that any non-degenerate real semiflow φ : R+×R → R is determined
by a continuous strictly increasing function µ : R → R such that µ(s) → −∞ as s → −∞ and

φ(t, s) = µ−1(µ(s)− t), for all t ≥ 0 and s ∈ R

[5, Theorem 2.5]. We recall that a non-degenerate real semiflow is a continuous function φ :
R+ × R → R satisfying the following properties:

5MSC(2010): 47D06, 34G10
Keywords and phrases: Evolution families, evolution semigroups, spectral mapping theorem.
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• φ(0, s) = s, s ∈ R;
• φ(t, φ(τ, s)) = φ(t+ τ, s), t, τ ≥ 0, s ∈ R;
• φ(t, s) ≤ s, t ≥ 0, s ∈ R;
• any orbit o(s) = {φ(t, s) : t ≥ 0} is non-trivial, i.e. o(s) ̸= {s}.
Furthermore, it is proved that any non-degenerate real semiflow φ : R+ × R → R with

lim
s→∞

φ(t, s) = +∞, for t ≥ 0,

that is µ(s) → ∞ as s → ∞, and any evolution family {U(t, τ)}t≥τ satisfying the inequality

∥U(s, φt(s))∥ ≤ Keαt, t ≥ 0, s ∈ R,

for some constants α > 0 and K ≥ 1, which is equivalent to

∥U(t, τ)∥ ≤ Keα(µ(t)−µ(τ)), t ≥ τ, (1)

define a strongly continuous semigroup {Tt}t≥0 on C0(R, E) by

Ttu(s) = U(s, φt(s))u(φt(s)) = U(s, µ−1(µ(s)− t))u(µ−1(µ(s)− t)), (2)

called as generalized evolution semigroup (see [5, Theorem 3.3]). Remark that if we consider in (2)
the right translation semiflow φ(t, s) = s− t, which means that µ(s) = s, we step over the classical
concept of the evolution semigroup,

Ttu(s) = U(s, s− t)u(s− t), t ≥ 0, u ∈ C0(R, E), s ∈ R.

Using the fact that the generalized evolution semigroup is similar to the classical evolution
semigroup (see Sect. 3.2 in [5]) one can easily established the spectral mapping theorem in this
context.

The aim of this note is to give a direct proof of the spectral mapping theorem for the generalized
evolution semigroup introduced in [5], without using the similarity relation mentioned above.

2 Generalized evolution semigroups

Let E be a complex Banach space and let B(E) be the Banach algebra of all bounded linear operators
on E. To simplify notations both norms on E and on B(E) are denoted by ∥ · ∥. Moreover, C(R, E)
is the space of all continuous functions u : R → E and C0(R, E) denotes the Banach space of all
functions in C(R, E) vanishing at ±∞, that is

C0(R, E) =

{
u ∈ C(R, E) : lim

|s|→∞
u(s) = 0

}
,

endowed with the sup-norm
∥u∥∞ = sup

s∈R
∥u(s)∥.

It is well-known that Cc(R, E) = {u ∈ C(R, E) : supp(u) is compact} is dense in C0(R, E).
A collection U = {U(t, τ)}t≥τ of bounded linear operators U(t, τ) on E is called an evolution

family (on the real line) on E if:

• U(t, t) = I, t ∈ R, here I denotes the identity on E;

• U(t, τ)U(τ, t0) = U(t, t0), t ≥ τ ≥ t0 in R;
• for each x ∈ E, the mapping (t, τ) 7→ U(t, τ)x is continuous on

∆ =
{
(t, τ) ∈ R2 : t ≥ τ

}
.
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It is known that if U is exponentially bounded, i.e. there exist two real constants α > 0 and
K ≥ 1 such that

∥U(t, τ)∥ ≤ Keα(t−τ), t ≥ τ, (3)

then one can define a strongly continuous semigroup on X = C0(R, E) by

Ttu(s) = U(s, s− t)u(s− t), t ≥ 0, u ∈ C0(R, E), s ∈ R,

called the evolution semigroup associated to U (see, for instance, [4, Lemma VI.9.10] or [3, Propo-
sition 3.11]). The above concept of evolution semigroup was extended by Räbiger and Schnaubelt
to a large class of E-valued function spaces, including in particular the space C0(R, E) [6].

We recall that a strongly continuous semigroup or a C0-semigroup on a Banach space X is a
family {Tt}t≥0 of operators in B(X) satisfying:

• T0 = I;

• Tt Tτ = Tt+τ , for t, τ ≥ 0;

• Ttx → x in X as t → 0+ for every fixed x ∈ X.

The (infinitesimal) generator of a strongly continuous semigroup {Tt}t≥0 is the linear operator G,
with domain D(G), defined by

D(G) =

{
x ∈ X : lim

t→0+

Ttx− x

t
exists

}
and

Gx = lim
t→0+

Ttx− x

t
, x ∈ D(G).

We refer the reader to the monograph of Engel and Nagel [4] for a brief history of strongly continuous
semigroups.

Let µ : R → R be a continuous strictly increasing function such that

lim
s→−∞

µ(s) = −∞ and lim
s→+∞

µ(s) = +∞,

and let U be an evolution family satisfying (1), which is a natural generalization of the condition
(3).

From [5, Theorem 3.3] we get that the family {Tt}t≥0 defined by Eq. (2) is a C0-semigroup on
C0(R, E), called the generalized evolution semigroup associated to µ and U. In the following, we
denote by G the generator of the generalized evolution semigroup.

[Rescaled generalized evolution semigroup] It is easy to check that for any λ ∈ C the evolution
family

V (t, s) = e−λ(µ(t)−µ(s))U(t, s), t ≥ s,

satisfies the inequality

∥V (t, s)∥ ≤ Ke(α+|λ|)(µ(t)−µ(s)), t ≥ s,

and thus one can define its generalized evolution semigroup
{
Tλ
t

}
t≥0

on C0(R, E) with respect to

µ. More precisely, Tλ
t is given by

Tλ
t = e−λtTt, t ≥ 0,

where {Tt}t≥0 is the generalized evolution semigroup associated to µ and U.

Furthermore, the generator of
{
Tλ
t

}
t≥0

is G− λI and its spectrum is given by

σ(G− λI) = σ(G)− λ.
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3 Spectral mapping theorem

We are now able to generalize the spectral mapping theorem for generalized evolution semigroups.
Let us first recall some basic notions and results from the spectral theory.

Let (A,D(A)) be a closed operator on the Banach space E. A complex number λ ∈ C belongs
to the residual spectrum Rσ(A) if the set (λI − A)D(A) is not dense in E and belongs to the
approximate point spectrum Aσ(A) if there exists a sequence (xn)n∈N in D(A) with ∥xn∥ ≥ 1 such
that (λI−A)xn → 0.

It is well-known that any C0-semigroup {Tt}t≥0 with the generator (A,D(A)) satisfies the
spectral inclusion relation

etσ(A) ⊂ σ(Tt), t ≥ 0. (4)

Furthermore, the residual spectra of the semigroup and its generator satisfy

etRσ(A) = Rσ(Tt) \ {0}, t ≥ 0. (5)

Theorem 3.1 (Spectral mapping theorem). The generalized evolution semigroup {Tt}t≥0 satisfies
the spectral mapping formula

σ (Tt) \ {0} = etσ(G), t ≥ 0. (6)

Proof. We adjust the arguments in [6, Theorem 2.3] for our purpose. Since

σ(Tt) = Rσ(Tt) ∪Aσ(Tt),

by (4) and (5) it suffices to prove that

Aσ (Tt) \ {0} ⊂ etσ(G), t ≥ 0.

In fact, this inclusion is a consequence of a weaker assertion:

1 ∈ Aσ (Tt0) for some t0 > 0 implies 0 ∈ σ(G). (7)

Indeed, if z ∈ Aσ (Tt0) \ {0}, then 1 ∈ Aσ
(
e−λt0Tt0

)
, where z = eλt0 . Applying (7) for the C0-

semigroup
{
e−λt0Tt0

}
and using the results in Example 2, we get that 0 ∈ σ(G) − λ. This yields

λ ∈ σ(G) and thus z ∈ et0σ(G).
It remains to prove (7). Assume that 1 ∈ Aσ (Tt0) for some t0 > 0. Then there exists a sequence

(un) in C0(R, E) such that ∥un∥∞ = 1 for all n ∈ N and

∥Tt0un − un∥∞ → 0.

From the inequality

∥Tkt0un − un∥∞ ≤
(
1 + ∥Tt0∥+ · · ·+ ∥Tt0∥

k−1
)
∥Tt0un − un∥∞, k ∈ N∗,

we get that for each n ∈ N there exists kn ∈ N such that

∥Tkt0ukn − ukn∥∞ <
1

2
, for k = 0, 2n.

Therefore,
1

2
< ∥Tkt0ukn∥∞ <

3

2
, for k = 0, 2n,

which is equivalent to

1

2
< sup

s∈R
∥U(s, µ−1(µ(s)− kt0))ukn(µ

−1(µ(s)− kt0))∥ <
3

2
, for k = 0, 2n. (8)
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The left-hand side of the above inequality implies

sup
s∈R

∥U(s, µ−1(µ(s)− nt0))ukn(µ
−1(µ(s)− nt0))∥ >

1

2
.

For each n ∈ N take sn ∈ R such that

∥U(sn, µ
−1(µ(sn)− nt0))xn∥ >

1

2
, (9)

where xn = ukn(µ
−1(µ(sn)− nt0)).

For each n ∈ N∗ put In = [µ(sn)− nt0, µ(sn) + nt0] and pick a continuously differentiable
function αn : R → R such that

αn(µ(sn)) = 1, 0 ≤ αn ≤ 1, supp(αn) ⊂ In,

and ∣∣α′
n(µ(s))

∣∣ ≤ 2

nt0
, for every s ∈ R.

Let us now define a function vn : R → E by

vn(s) =

{
αn(µ(s))U(s, µ−1(µ(sn)− nt0))xn, s ≥ µ−1(µ(sn)− nt0),

0, otherwise.

One can easily check that vn ∈ Cc(R, E) and supp(vn) ⊂ µ−1(In).
Furthermore, from (9) we get

∥vn∥∞ ≥ ∥vn(sn)∥ = ∥U(sn, µ
−1(µ(sn)− nt0))xn∥ >

1

2
.

For s ≥ µ−1(µ(sn) + t− nt0) we have

Ttvn(s) = αn(µ(s)− t)U(s, µ−1(µ(sn)− nt0))xn,

thus
1

t
(Ttvn − vn) (s) =

1

t
(αn(µ(s)− t)− αn(µ(s))) U(s, µ−1(µ(sn)− nt0))xn.

This yields that vn ∈ D(G) and

Gvn(s) =

{
−α′

n(µ(s))U(s, µ−1(µ(sn)− nt0))xn, s ≥ µ−1(µ(sn)− nt0),

0, otherwise.

Fix s ∈ µ−1(In) and put k =
[
µ(s)−µ(sn)

t0

]
+ n. It follows that k ∈ {0, 1, . . . , 2n}. Moreover, writing

µ(s)− µ(sn)

t0
=

[
µ(s)− µ(sn)

t0

]
+ cs, with cs ∈ [0, 1),

we get
s = µ−1(µ(sn) + (k − n)t0 + cst0).

Using (1) and the right-hand side of (8) we have

∥Gvn(s)∥ ≤ 2

nt0
∥U(s, µ−1(µ(sn)− nt0))xn∥

=
2

nt0
∥U(µ−1(µ(sn) + (k − n)t0 + cst0), µ

−1(µ(sn)− nt0))xn∥

≤ 2

nt0
Keαcst0∥U(µ−1(µ(sn) + (k − n)t0), µ

−1(µ(sn)− nt0))xn∥

≤ 2

nt0
Keαt0∥U(µ−1(µ(sn) + (k − n)t0), µ

−1(µ(sn) + (k − n)t0 − kt0))xn∥

≤ 3

nt0
Keαt0 ,
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where xn = ukn(µ
−1(µ(sn)+(k−n)t0−kt0)). Therefore, Gvn → 0 in C0(R, E), and thus 0 ∈ Aσ(G).

This proves (7) and thus (6) holds.

Corollary 3.2. The spectrum σ (Tt) is rotationally invariant for t > 0, that is

λσ (Tt) = σ (Tt) , for every λ ∈ C with |λ| = 1. (10)

Proof. For each γ ∈ R we define the isometry

Ψγu(s) = eiγµ(s)u(s), u ∈ C0(R, E).

We have

ΨγTtΨ−γu(s) = eiγµ(s)U(s, µ−1(µ(s)− t))e−iγ(µ(s)−t)u(µ−1(µ(s)− t))

= eiγtTtu(s).

It is well-known that the generator of the C0-semigroup {ΨγTtΨ−γ}t≥0 is ΨγGΨ−γ and σ(G) =

σ(ΨγGΨ−γ) (see, for instance, [4, II.2.1]). On the other hand, the generator of
{
eiγtTt

}
t≥0

is

G+ iγI and σ(G+ iγI) = σ(G) + iγ [4, II.2.1]. All these show that

σ(G) = σ(G) + iγ, γ ∈ R.

Finally, the spectral mapping theorem and the above identity prove (10).

Comments

Throughout this paper, all the results stand for C0(R, E). Evidently they can be extended similarly
to the general context of nonuniform behavior, formally replacing the function space C0(R, E) with
the super-space C∗ introduced in [1]. However, such an approach would significantly complicate
computations, without adding any essential merit for the main purpose.
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