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Paşc GĂVRUŢA - Department of Mathematics, Politehnica University Timisoara
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ON THE NORMAL FORM OF DOUBLE–HOPF
BIFURCATION
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Abstract

A study on degenerate normal form of double-Hopf bifurcation is per-
formed. This bifurcation is met in differential systems of dimension at least
four and with minimum two independent parameters. We obtain bifurca-
tion diagrams for amplitude system when one or two generic conditions are
eliminated. 1

Keywords and phrases: dynamical systems, bifurcations, normal forms

1 Introduction

In this work we aim to present a study related to normal form of double-Hopf
bifurcation in generic four-dimensional differential system. A double-Hopf bifur-
cation arises in the following way. Let

ẋ = f (x, α) , x ∈ R4, α = (α1, α2) ∈ R2, (1)

f smooth, be a four-dimensional differential system with two parameters. Assume
that x = 0 is an equilibrium point of the system for all α with |α| =

√
α2
1 + α2

1

small enough, that is, f (0, α) ≡ 0; x = 0 stands for x = (0, 0, 0, 0) and α = 0 for
α = (0, 0). The system (1) can be written as

ẋ = A (α)x+ F (x, α) (2)

where F (x, α) = O
(
|x|2
)

is a smooth function denoting Taylor series with terms

of order at least 2. Assume the matrix A(α) has two pairs of simple complex-
conjugate eigenvalues λ1, λ1, λ2, λ2,

λ1 (α) = µ1 (α) + iω1 (α) , λ2 (α) = µ2 (α) + iω2 (α)

1MSC (2010): 37D05, 37G05, 37G10
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On the normal form of double–Hopf bifurcation 5

for all sufficiently small |α| , where µ1,2 (α) and ω1,2 (α) are smooth functions of α
such that µ1 (0) = µ2 (0) = 0, respectively, ω1 (0) = ω10 > 0 and ω2 (0) = ω20 > 0.

When these conditions are satisfied, the system (1) undergoes a bifurcation
at α = 0, which is known as double-Hopf or Hopf-Hopf bifurcation. Some of
the classical works dealing with qualitative properties of differential systems and,
particularly, bifurcations, are [1], [2], [3], [5], [9], [14] and [16]. Of the first papers
studying non-degenerate double-Hopf bifurcations are [6], [7], [8] and [10]. Recent
results related to double-Hopf bifurcations can be found in [4], [11], [12], [13], [15],
[17].

The paper is organized as it follows. After a short introduction, in section
2 we present the system to be studied in the new conditions. We transform it
into a better form, while keeping the two systems locally topologically equivalent
near the origin, and present the main properties of the system in the second
form. In section 3, we study the system for the new conditions and obtain new
bifurcation diagrams describing the behavior of the system. Conclusive remarks
end the article.

2 General analysis

The system (2) can be successively transformed in new forms by several transfor-
mations as in [9], obtaining a form in complex variables (v1, v2) . At this stage, the
system is written in polar coordinates v1 = r1e

iϕ1 , v2 = r2e
iϕ2 , which give rise to a

four-dimensional system in (r1, r2, ϕ1, ϕ2) . Truncating higher-order terms we ob-
tain a system in which the variables (ϕ1, ϕ2) are decoupled by (r1, r2) and satisfy
ϕ̇i = ωi (0) , i = 1, 2. Imposing now ρi = r2i > 0, i = 1, 2, a new two-dimensional
system is obtained, called amplitude system, given by





dρ1
dτ = 2ρ1

[
µ1 + p11ρ1 + p12ρ2 + p13ρ1ρ2 + s1ρ

2
2

]

dρ2
dτ = 2ρ2

[
µ2 + p21ρ1 + p22ρ2 + p23ρ1ρ2 + s2ρ

2
1

] , (3)

where pij = pij (µ) and si = si (µ) , i = 1, 2, j = 1, 2, 3, are smooth functions
depending on a parameter µ = (µ1, µ2) , with |µ| =

√
µ21 + µ22 < ε for some ε > 0

sufficiently small. In [9], using a rather complex transformation, the two terms in
ρ1ρ2 from (3) are reduced to 0. We prefer to keep them but will show, as expected,
they do not affect the local analysis of the system for pij (0) 6= 0, i, j = 1, 2, and
|µ| sufficiently small.

Remark 2.1. The first quadrant of the phase space, corresponding to ρ1 ≥ 0 and
ρ2 ≥ 0, is invariant with respect to the flow of the system (3), because the axis
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ρ1 = 0 and ρ2 = 0 are invariant to the flow. Thus, the system restricted to the
first quadrant is well-defined and will be studied only in this region.

The system (3) with pij (0) 6= 0 for i, j = 1, 2 has been studied in [9] and a
bifurcation-based analysis was presented. In this work we present a study for the
system (3) when p12 (µ) p21 (µ) = 0 for all |µ| sufficiently small, p11 (0) < 0 and
p22 (0) < 0. Due to the reasons explained above, the dynamics of the system will
be considered only on the first quadrant ρ1 ≥ 0 and ρ2 ≥ 0.

Consider further the transformation (ρ1, ρ2) 7−→ (ξ1, ξ2) given by

ξ1 = −p11 (µ) ρ1 and ξ2 = −p22 (µ) ρ2. (4)

It is well defined and nonsingular for all |µ| small enough because p11 (0) 6= 0
and p22 (0) 6= 0. By changes (4) and t = 2τ, the system (3) is locally topologically
equivalent near the origin for all sufficiently small |µ| to





dξ1
dt = ξ1

(
µ1 − ξ1 − θξ2 +Mξ1ξ2 +Nξ22

)

dξ2
dt = ξ2

(
µ2 − δξ1 − ξ2 + Sξ1ξ2 + Pξ21

) , (5)

where θ = p12
p22
, M = p13

p11p22
, N = s1

p222
, δ = p21

p11
, S = p23

p11p22
and P = s2

p211
,

with θ = θ (µ) , δ = δ (µ) , M = M (µ) , N = N (µ) , S = S (µ) and P = P (µ)
are smooth functions of their arguments.

The new system (5) inherits the property of being invariant with respect to
the first quadrant ξ1 ≥ 0 and ξ2 ≥ 0, and the transformation (4) maps the first
quadrant of the system (3) into the first quadrant of (5). Thus, the study of the
new system (5) in the first quadrant is well-defined.

Remark 2.2. The case p11 (0) > 0 and p22 (0) > 0 reduces to the previous case
by a change in (3) of the form
ξ1 = p11ρ1, ξ2 = p22ρ2, t = 2τ and (ξ1, ξ2) 7−→ (−ξ1,−ξ2) .

Assume first θ (0) δ (0) 6= 0. Thus, pij (0) 6= 0, for all i, j = 1, 2. The dynamics
of the system (5) is known in this case. More exactly, when θ (0) δ (0) − 1 6= 0,
θ (0) δ (0) 6= 0 and p11 (0) p22 (0) > 0, it has been shown in [9] that the system (5)
is locally topologically equivalent near the origin for all |µ| sufficiently small to
the system { dξ1

dt = ξ1 (µ1 − ξ1 − θ (0) ξ2)
dξ2
dt = ξ2 (µ2 − δ (0) ξ1 − ξ2)

. (6)

In order to introduce the reader to specific methods of studying systems of
type (5), we want to present in this section the main properties of the system (5).
Bifurcation diagrams for (6) are presented in [9].
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Since in what follows, the expressions of θ = θ (µ) , δ = δ (µ) , M = M (µ) ,
N = N (µ) , S = S (µ) and P = P (µ) are needed only at µ = 0, in order to save
symbols, we denote by θ (0) = θ, δ (0) = δ and so on.

The system (5) has three equilibria O (0, 0) , E1 (µ1, 0) and E2 (0, µ2) for all |µ|
sufficiently small. Another equilibrium E3 (ξ1, ξ2) exists for |µ| sufficiently small,
where {

ξ1 = −µ1
θδ−1 (1 +O (|µ|)) + θµ2

θδ−1 (1 +O (|µ|))
ξ2 = δµ1

θδ−1 (1 +O (|µ|)) + −µ2
θδ−1 (1 +O (|µ|)) , (7)

provided that

θδ − 1 6= 0. (8)

O
(
|µ|k

)
=
∑

i+j≥k cijµ
i
1µ

j
2 denotes a Taylor rest of order k ≥ 1. The existence of

E3 is based on the Implicit Function Theorem applied to the algebraic system

µ1 − ξ1 − θξ2 +Mξ1ξ2 +Nξ22 = 0 and µ2 − δξ1 − ξ2 + Sξ1ξ2 + Pξ21 = 0. (9)

The four equilibrium points are well-defined whenever their coordinates are
non-negative. Two bifurcation curves determine when E3 is born or vanishes,
namely

T1 =
{

(µ1, µ2) ∈ R2 | µ1 = θµ2 +O
(
µ22
)
, µ2 > 0

}
(10)

and

T2 =
{

(µ1, µ2) ∈ R2 | µ2 = δµ1 +O
(
µ21
)
, µ1 > 0

}
. (11)

On T1, E3 coincides to E2 (0, µ2) while on T2 to E1 (µ1, 0) ; we call E3 trivial in
these cases, otherwise nontrivial.

Remark 2.3. The eigenvalues of the first three equilibria O and E1,2 are, respec-
tively, λO1,2 = µ1,2, λ

E1
1 = −µ1 and λE1

2 = −δµ1 + µ2 + Pµ21, and λE2
1 = −µ2 and

λE2
2 = µ1 − θµ2 +Nµ22.

The characteristic polynomial of the system (5) at an equilibrium point (ξ1, ξ2)
of type E3, i.e. satisfying (9), has the form P (λ) = λ2 − 2pλ+B where

p = −1

2
(ξ1 + ξ2) +

1

2
(M + S) ξ1ξ2 and B = −ξ1ξ2 (θδ − 1 +O (|ξ|)) . (12)

It follows immediately from (12) that the product of the eigenvalues λ1,2 of
E3 satisfy λ1λ2 = B, namely

λ1λ2 = − 1

θδ − 1
(−µ1 + θµ2) (δµ1 − µ2) (1 +O (|µ|)) . (13)
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Moreover, if λ1,2 are of the form λ1,2 = p±√q then

p = − 1

2 (θδ − 1)
(−µ1 + θµ2 + δµ1 − µ2) and q =

1

4 (θδ − 1)2
(
aµ21 + 2bµ1µ2 + cµ22

)

(14)
in their lowest terms, where a = (δ + 1)2 − 4θδ2, b = 2θ2δ2 + θδ − θ − δ − 1 and
c = (θ + 1)2 − 4θ2δ. In general,

B = −ξ1ξ2
(
θδ − 1 +m11ξ1 + (M − 2Nδ − Sθ) ξ2 + 2MPξ21 + 4NPξ1ξ2 + 2NSξ22

)
,

(15)
where m11 = S −Mδ − 2Pθ and

q =
1

4
(ξ1 − ξ2)2 +

1

4
ξ1ξ2

(
4θδ + c11ξ1 + c12ξ2 + 8MPξ21 + c13ξ1ξ2 + 8NSξ22

)
(16)

where c11 = 2S − 2M − 4Mδ − 8Pθ, c12 = 2M − 2S − 8Nδ − 4Sθ and
c13 = 16NP + (M + S)2 . At ξ2 = ξ1, q becomes

q = θδξ21 +
1

4
(c11 + c12) ξ

3
1 +

1

4
(8MP + 8NS + c13) ξ

4
1 . (17)

We state in the following a result concerning the sign of p when θδ− 1 6= 0, which
will be used later on to show the non-existence of Hopf bifurcation at E3.

Lemma 2.4. If θδ−1 6= 0, then p (µ1, µ2) < 0 whenever E3 exists (i.e in the first
quadrant) for all |µ| sufficiently small.

Proof. If θδ− 1 > 0, E3 (ξ1, ξ2) is well-defined (i.e. exists in the first quadrant
of the phase space) and non-trivial when (µ1, µ2) lies in the region

R1 =
{

(µ1, µ2) ∈ R2 | −µ1 + θµ2 > 0, δµ1 − µ2 > 0, |µ| < ε
}
,

while, if θδ − 1 < 0, when (µ1, µ2) lies in

R2 =
{

(µ1, µ2) ∈ R2 | −µ1 + θµ2 < 0, δµ1 − µ2 < 0, |µ| < ε
}
,

for some ε > 0 small enough. Denote by H the curve p = 0, that is,

H =
{

(µ1, µ2) ∈ R2, p (µ1, µ2) = 0, |µ| < ε
}
.

When θδ − 1 6= 0, θ 6= 1 and δ 6= 1, it follows that H becomes

H1 =

{
(µ1, µ2) , µ2 = −µ1

δ − 1

θ − 1
(1 +O (µ1))

}
.
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In finding H1, only the linear terms in ξ1 and ξ2 were needed from the expression
of p given in (12), thus, when |µ| is small enough, we can approximate p =
−1

2 (ξ1 + ξ2) . It follows that p < 0 on R1,2 because ξ1,2 > 0 on R1,2.

It remains to study the cases θ = 1, respectively, δ = 1. Assume further
θδ − 1 < 0. A similar proof can be obtained for θδ − 1 > 0.

Consider the first case θ = 1 and δ < 1; δ 6= 0. It follows from (12) that p is of
the form p = 1

2

(
−µ1 + k1µ

2
2

)
, while H becomes

H2 =
{

(µ1, µ2) , µ1 = k1µ
2
2 (1 +O (µ2))

}
, (18)

where we assume k1 6= 0. One can show H2 * R2, thus p (µ) keeps constant sign
on R2. Indeed, assuming that there exists a point (µ1, µ2) ∈ H2 ∩ R2, we obtain
µ1 = k1µ

2
2, µ2 (1− µ2k1) < 0 and δk1µ

2
2 − µ2 = −µ2 (1− δµ2k1) < 0 with |µ|

sufficiently small, which lead to the contradiction µ2 < 0 and µ2 > 0.

If δ < 0, then (µ1, 0) ∈ R2 for µ1 > 0 which leads to p (µ1, 0) = −1
2µ1 < 0,

thus, p (µ1, µ2) < 0 on R2.

If 0 < δ < 1, then any point (µ1, µ2) ∈ R2 satisfies µ2 < µ1 <
1
δµ2 which

lead to µ2 (1− δ) > 0, that is, µ2 > 0, respectively, µ1 > µ2 > 0. Therefore,
R2 ⊂ {µ1 > 0, µ2 > 0} . A point (µ1, µ2) ∈ R2 if and only if µ2 = c0µ1 where
0 < δ < c0 < 1 and µ1 > 0. For such a point we have p = 1

2

(
−1 + k1c

2
0µ1
)
µ1 < 0

for |µ| sufficiently small. It follows that p (µ1, µ2) < 0 on R2.

Consider the second possibility, δ = 1 and θ < 1; θ 6= 0. Then

p =
1

2

(
−µ2 + k2µ

2
1

)

by (12), while H becomes

H3 =
{

(µ1, µ2) , µ2 = k2µ
2
1 (1 +O (µ1))

}
,

where we assume k2 6= 0. One shows similarly that H2 * R2. Indeed, if there
exists a point (µ1, µ2) ∈ H2 ∩ R2 then, µ2 = k2µ

2
1, −µ1 (1− θk2µ1) < 0 and

µ1 (1− k2µ1) < 0. Since |µ| is sufficiently small, these lead to the contradiction
µ1 > 0 and µ1 < 0. Thus, H2 * R2 and p keeps constant sign on R2.

If θ < 0, then (0, µ2) ∈ R2 for µ2 > 0 which leads to p (0, µ2) = −1
2µ2 < 0,

thus, p (µ1, µ2) < 0 on R2.

If 0 < θ < 1, then any point (µ1, µ2) ∈ R2 satisfies µ1 < µ2 <
1
θµ1 which

lead to µ1 (1− θ) > 0, that is, µ1 > 0, respectively, µ2 > µ1 > 0. Therefore,
R2 ⊂ {µ1 > 0, µ2 > 0} . A point (µ1, µ2) ∈ R2 if and only if µ2 = b0µ1 where
1 < b0 <

1
θ and µ1 > 0. For such a point we have p = 1

2 (−b0 + k2µ1)µ1 < 0 for
|µ| sufficiently small. It follows that p (µ1, µ2) < 0 on R2. �
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Theorem 2.5. 1) If θδ − 1 > 0, the equilibrium E3 is a saddle.

2) If θδ− 1 < 0, the equilibrium E3 is stable (node or focus). Moreover, when
0 < θδ < 1, E3 is a stable node whenever is nontrivial.

3) No Hopf bifurcation can occur at E3 when θδ − 1 6= 0.

Proof. 1) The eigenvalues of E3

(
−µ1+θµ2
θδ−1 , δµ1−µ2θδ−1

)
in their lowest terms satisfy

(13) and λ1 + λ2 = 2p.

Assume first θδ − 1 > 0. Then a nontrivial E3 exists when (µ1, µ2) lies in
the region R1, where λ1λ2 < 0. The eigenvalues λ1, λ2 are real numbers on R1

because, otherwise, if λ1,2 = p ± iω, then λ1λ2 = p2 + ω2 > 0 which contradicts
λ1λ2 < 0. Thus, E3 is a saddle point with q > 0. This result may also be obtained
from λ1λ2 = −ξ1ξ2 (θδ − 1 +O (|ξ|)) because ξ1 > 0 and ξ2 > 0 are sufficiently
small for |µ| small, that is, θδ − 1 +O (|ξ|) > 0. By (17), the result remains valid
at ξ2 = ξ1.

2) In the second case θδ−1 < 0, a nontrivial E3 exists on the region R2 where
λ1λ2 > 0 by (12) and λ1 + λ2 = 2p < 0 by Lemma 2.4. It follows that λ1,2 < 0
if q > 0, respectively, Re (λ1,2) < 0 if q < 0. Thus, E3 is stable (node or focus)
whenever θδ − 1 < 0.

Assume further 0 < θδ < 1. The equation q = 0 in variable µ1 has the
discriminant ∆ = b2 − ac given by

∆ = 4θδ (θδ − 1)3 µ22 < 0.

Thus, the sign of q is given by the sign of a, which is always strictly positive
in this case. Indeed, if θ < 0 and δ < 0 then a > 0, while a > (δ − 1)2 ≥ 0
if δ > 0 and θ > 0. Therefore, q > 0 which, in turn, implies that λ1,2 are real
numbers which satisfy λ1 + λ2 < 0 and λ1λ2 > 0 on R2. It follows that λ1,2 < 0
and E3 is a stable node. By (17), the result remains valid at ξ2 = ξ1 since
q = θδξ21 (1 +O (|ξ|)) and |ξ| is small enough to have 1 +O (|ξ|) > 0.

3) From Lemma 2.4, it follows that p 6= 0 whenever E3 exists and is nontrivial
which, in turn, implies that the eigenvalues λ1,2 cannot be purely complex of the
form ±iω0 with ω0 > 0, thus, a Hopf bifurcation cannot occur at E3. It implies
that period orbits emerging from Hopf bifurcation do not exist around E3. �

Remark 2.6. Since the above analysis did not use the terms with the coefficients
M, N, P and S from (5), it follows that the system (5) is locally topologically
equivalent near the origin for all |µ| sufficiently small to the system (6).
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3 Analysis and bifurcation diagrams at θ (µ) δ (µ) = 0

3.1 The case θ (µ) = 0 and δ (0) 6= 0

Assume first θ (µ) = 0 for all |µ| sufficiently small and δ (0)
not
= δ 6= 0. Then

E3 (ξ1, ξ2) exists and has its coordinates in their lowest terms given ξ1 = µ1+Nµ22
and ξ2 = µ2 − δµ1, provided that N (0)

not
= N 6= 0. The following result describes

the behavior of E3.

Theorem 3.1. If θ (µ) = 0 for all |µ| sufficiently small, δ (0) 6= 0 and N (0) 6= 0,
E3 is an attractor (node or focus) whenever it exists for all |µ| sufficiently small.

Proof. A nontrivial E3 is well-defined when (µ1, µ2) lies in the region

R3 =
{

(µ1, µ2) ∈ R2 | µ1 +Nµ22 > 0, µ2 − δµ1 > 0
}

where

p = −1

2

(
µ1 +Nµ22 + µ2 − δµ1

)
< 0

if δ 6= 1 and its eigenvalues satisfy λE3
1 λE3

2 = ξ1ξ2 (1 +O (|ξ|)) > 0. Thus, E3 is an
attractor (node or focus) whenever δ 6= 1. At δ = 1, p is of the form

p = −1

2
µ2 (1 +O (|µ|)) + h1µ

2
1 (1 +O (|µ|)) .

Assume h1 6= 0. Therefore, from the Implicit Function Theorem, p = 0 is a curve
of the form

H4 =
{

(µ1, µ2) , µ2 = 2h1µ
2
1 (1 +O (µ1))

}
.

We notice that H4 ∩ R3 = ∅. Indeed, assuming that there exists a point
(µ1, µ2) ∈ H4 ∩ R3, then µ1 (1 +O (µ1)) > 0 and −µ1 (1 +O (µ1)) > 0, which is
a contradiction for a fixed µ1 with |µ1| small enough. Thus, p (µ) keeps constant
sign on R3.

Assume first N > 0. Then (0, µ2) ∈ R3 for all µ2 > 0 and p (0, µ2) =
= −1

2µ2 (1 +O (|µ|)) < 0, thus, p (µ1, µ2) < 0 for all (µ1, µ2) ∈ R3.
If N < 0, take a point of the form

(
−2Nµ22, µ2

)
∈ R3 for all µ2 > 0 sufficiently

small. Then p
(
−2Nµ22, µ2

)
= −1

2µ2 (1 +O (|µ|)) < 0, thus, p (µ1, µ2) < 0 for all
(µ1, µ2) ∈ R3.

While typically h1 6= 0, when h1 = 0 we can write p in the form

p = −1

2
µ2 (1 +O (|µ|)) + hnµ

n
1 (1 +O (|µ|))
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for some n ≥ 2 with hn 6= 0. However, this does not change the proof and conclu-
sion. �

Remark 3.2. Typically E3 is a node when

θ (µ) δ (µ) = 0

because q = 1
4 (ξ1 − ξ2)2 +O

(
|ξ|3
)
.

Remark 3.3. At θ (µ) = 0 and δ 6= 0, the first three equilibria O and E1,2 still
exist with the corresponding eigenvalues

λO1,2 = µ1,2,

λE1
1 = −µ1 and λE1

2 = −δµ1 + µ2, respectively, λE2
1 = −µ2 and λE2

2 = µ1 +Nµ22.

Two bifurcation curves determine the existence of E3, namely T2 (11) given
by µ2 = δµ1 (1 +O (µ1)) , µ1 > 0, and

C1 =
{

(µ1, µ2) ∈ R2 | µ1 = −Nµ22 +O
(
µ32
)}
. (19)

Different to T2, the curve C1 is tangent to the µ2−axis at O. It is a parabola
when |µ| is sufficiently small. Taking into account the signs of δ and N, four
different bifurcation diagrams arise in this case, Figure 1. The phase portraits
corresponding to the eight regions 1− 8 from the bifurcation diagrams D1−D12
are depicted in Figure 4.

The next table summarizes the dynamics of the four equilibria on different
regions of the parametric plane µ1µ2 as they appear on the bifurcation diagrams
for θ (µ) = 0 and δ (0) 6= 0.

1 2 3 4 5 6 7 8

O s r r r s a s s
E1 − s s a a − − s
E2 a a s s − − s −
E3 − − a − − − a a

Table 1: Types of the four equilibria at θ(µ)δ(µ) = 0. The abbreviations are the
followings: a for attractor, s for saddle and r for repeller.
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                     δ>0, N<0                   δ<0, N<0                  δ>0, N>0                                               δ<0, N>0  
  

                                                               

                                      

T2 

T2 

4 

µ2 

µ1 

5 T2 

T2 E3 

1 3 

C1
2 

4 
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1 

E3 

C1
2 

3 

8 6 

1 E3 

C1
7 

3 

5 6 

1 
E3 

C1

7 

3 

8 

5 6 

D1 D2 D3 D4 

Figure 1: Bifurcation diagrams corresponding to θ(µ) = 0 and δ(0) 6= 0.

3.2 The case θ (0) 6= 0 and δ (µ) = 0

Secondly, assume θ (0)
not
= θ 6= 0 and δ (µ) = 0 for all |µ| sufficiently small. Then

E3 in its lowest terms read E3 (ξ∗1 , ξ
∗
2) with ξ∗1 = µ1 − θµ2 and ξ∗2 = µ2 + Pµ21. It

is nontrivial on the region

R4 =
{

(µ1, µ2) | µ1 − θµ2 > 0, µ2 + Pµ21 > 0
}

where λ1λ2 = ξ1ξ2 (1 +O (|ξ|)) > 0 and λ1 + λ2 = 2p < 0 if θ 6= 1, where p in
its lowest terms is p = −1

2

(
µ1 − θµ2 + µ2 + Pµ21

)
.

One shows similarly to the previous case that p < 0 for θ = 1 as well. In
conclusion,we can write the following theorem.

Theorem 3.4. If δ (µ) = 0 for all |µ| sufficiently small, θ (0) 6= 0 and P (0) 6= 0,
E3 is an attractor (node or focus) whenever it exists for all |µ| sufficiently small.

The existence of E3 is determined by T1 (10) given by µ1 = θµ2 (1 +O (µ2)) ,
µ2 > 0, and a curve C2 tangent to the µ1−axis at O, given by

C2 =
{

(µ1, µ2) ∈ R2 | µ2 = −Pµ21 (1 +O (µ1))
}
. (20)

Remark 3.5. The eigenvalues of the first three equilibria are λO1,2 = µ1,2, λ
E1
1 =

−µ1 and λE1
2 = µ2 + Pµ21, respectively, λE2

1 = −µ2 and λE2
2 = µ1 − θµ2.

Four different bifurcation diagrams emerge in this case as well, Figure 2, de-
pending on the signs of θ and P.

3.3 The case θ (µ) = 0 and δ (µ) = 0

Finally, assume θ (µ) = δ (µ) = 0. Then E3 (ξ∗1 , ξ
∗
2) has its coordinates

ξ∗1 = µ1 + Nµ22 and ξ∗2 = µ2 + Pµ21, where N
def
= N (0) 6= 0 and P

def
= P (0) 6= 0.
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                     >0, P<0                   >0, P>0                  <0, P<0                                               <0, P>0  
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µ1 
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T1 T1 

1 C2 
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D5 D6 D7 D8 

Figure 2: Bifurcation diagrams corresponding to δ(µ) = 0 and θ(0) 6= 0.

E3 exists and is nontrivial on the region stable

R5 =
{

(µ1, µ2) ∈ R2 | µ1 +Nµ22 > 0, µ2 + Pµ21 > 0
}

where

p = −1

2
(µ1 + µ2) +O

(
|µ|2

)
.

It follows that p < 0 for |µ| sufficiently small, thus, E3 is an attractor. Typi-
cally, E3 is a node since q = (µ1 + µ2)

2 ≥ 0 in its lowest terms.

Remark 3.6. The eigenvalues of the first three equilibria are λO1,2 = µ1,2,

λE1
1 = −µ1 and λE1

2 = µ2 + Pµ21, respectively, λE2
1 = −µ2 and λE2

2 = µ1 +Nµ22.

Depending on the signs of N and P, four different bifurcations diagrams are
obtained, Figure 3. The bifurcation diagrams depicted in Figures 1-3 correspond-
ing to the three cases arising from θ (µ) δ (µ) = 0, are different in terms of the
existing bifurcation curves in the three cases but the order of different regions in
the diagrams from different cases may coincide.

                     N<0, P<0                   N<0, P>0                  N>0, P<0                                               N>0, P>0  
  

                                                                

                                      E3 

C2 

C1 

4 

µ2 

µ1 

5 

C1 C1 

1 

C2 

2 

3 

4 

5 6 

1 

E3 

C2

2 

3 

8 6 

1 

E3 

C2
7 

3 

5 6 

1 
E3 

C1 7 

3 

8 

5 6 

D9 D10 D11 D12 

Figure 3: Bifurcation diagrams corresponding to θ(µ) = 0 and δ(µ) = 0.
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O E1

E2

E3

O

E1

E2

O E1

E2

E3

E3

O O

O

O O

1 2 3 4

E1

E2

5 6 7 8

E2

E1

Figure 4: Phase portraits corresponding to the eight regions 1− 8 from the bifur-
cation diagrams D1−D12.

4 Conclusions

We eliminated the restriction θ(µ) ·δ(µ) 6= 0 that appears in [9] in the study of the
truncated normal form of double-Hopf bifurcation. In the three cases we consid-
ered, new bifurcation diagrams have been obtained which describe the behavior
of the normal form in these cases. More other cases may arise by eliminating the
condition θ(µ) · δ(µ) 6= 0, which we want to approach in further studies.
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Stelian Mihalaş and Oana Brandibur
Department of Mathematics
Faculty of Mathematics and Informatics,
West University of Timisoara,
V.Parvan 4, 300223 - Timisoara, ROMANIA
E-mail: stelian.mihalas@e-uvt.ro
E-mail: oana.brandibur92@e-uvt.ro



APPROXIMATE SOLUTIONS FOR RICCATI
DIFFERENTIAL EQUATION OF FRACTIONAL

ORDER USING THE LEAST SQUARES
DIFFERENTIAL QUADRATURE METHOD
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Abstract

In the present paper we employ a recently introduced approximation
method, namely the Least Squares Differential Quadrature Method (LSDQM),
in order to compute analytical approximate polynomial solutions for several
quadratic Riccati differential equation of fractional order. 1

Keywords and phrases: Riccati differential equation of fractional order,
Least squares differential quadrature method (LSDQM)

1 Introduction

In the last decades, fractional differential equations were the focus of intense re-
search due to their importance in many real life applications like viscoelasticity
([1]), chemical engineering ([2]),fluid mechanics ([5]) or signal processing ([4]). In
this paper we will consider the following class of Riccati differential equations of
fractional order:

Dαy(t)−A(t)y2(t)−B(t)y(t) = f(t), 0 < α ≤ 1, t ∈ [0, 1], (1)

together with an initial condition of the type:

y(0) = k, (2)

where A(t), B(t) and C(t) are given real functions, k is a given real constant and
Dαy(t) denotes Caputo’s fractional derivative of order α:

Dαy(t) =
1

Γ(n− α)
·
∫ t

0
(t− ζ)−(α−n+1) · y(n)(ζ)dζ, n− 1 < α ≤ n (3)

1MSC (2010): 34K28, 45L05
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The Riccati differential equation of fractional order has been studied both numer-
ically and analytically in numerous articles. Among the methods used to solve
this equation we mention: Jacobi collocation method (JCM)([3]), Variational it-
eration method (V IM)([6]), modified homotopy perturbation method (MHPM)
([7]), optimal homotopy asymptotic method (OHAM) ([8]), Polynomial Least
Squares Method (PLSM) ([9]).

2 The Least Squares Differential Quadrature Method
(LSDQM)

The Least Squares Differential Quadrature Method (LSDQM) ([10]) allow us to
compute approximate analytical polynomial solutions for fractional differential
Riccati equations of the type (1). In order to obtain an approximate analytical
polynomial solution for the equation (1), we will consider a numerical meshing of
the interval I = [0, 1] by means of a partition ∆M consisting of M + 1 equidistant
points:
∆M : 0 = t0 < t1 < t2 < · · · < tM−1 < tM = 1.
To the equation (1) we attach the following operator D:

D(y(t)) = Dαy(t)−A(t)y2(t)−B(t)y(t)− f(t). (4)

We denote by ỹ(t) an approximate solution of the equation (1). By replacing in D
the exact solution y(t) with this approximate solution we obtain the reminder R:

R(t, ỹ(t)) = D(ỹ(t)), t ∈ [0, 1]. (5)

Definition 1. We call an ε-approximate solution of the problem (1 - 2) related to
the partition ∆M an approximate polynomial solution which satisfies the following
relations:

R(ti, ỹ(ti)) < ε, i = 0,M, (6)

ỹ(0) = k. (7)

Definition 2. We consider the sequence of polynomials:

PN (t) =
N∑

k=0

dkt
k, dk ∈ R, k = 0, N. (8)

We call the sequence of polynomials PN (t) convergent to the solution of the prob-
lem (1 - 2) if:

lim
N→∞

D(PN (t)) = 0. (9)
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We will compute ε - approximate polynomial solutions of the type:

TN (t) =
N∑

k=0

d̃kt
k, (10)

with the initial condition: TN (0) = k.
The constants d̃k are calculated by taking the following steps:

• From the initial condition we obtain d̃0 as function of d̃1, d̃2 · · · d̃N and replace
them in the expression of TN (t) (which from now on will be a function of
d̃1, d̃2, · · · , d̃N only).

• We attach to the problem (1 - 2) the functional:

J (d̃1, d̃2, · · · , d̃N ) =
M∑

i=0

R2(ti, TN (ti)). (11)

• By minimizing the functional (11) we obtain the coefficients d̃1, d̃2 · · · d̃N .

• We replace the coefficients d̃1, d̃2 · · · d̃N .in the expression (10) and denote

by T 0
N (t) =

N∑
k=0

d̃kt
k, the analytical approximate polynomial solutions by

LSDQM of the problem (1 - 2).

The following convergence theorem is satisfied:

Theorem 1. The sequence of polynomials T 0
N (t) satisfies the relations:

lim
N→∞

R2(ti, T
0
N (ti)) = 0, i = 0,M. (12)

Proof. Let y(t) be an exact solution of the problem (1 - 2), which means from

hypothesis that there exist a sequence of polynomials PN (t) with PN (t) =
N∑
k=0

dkt
k,

dk ∈ R, k = 0, N converging to y(t): lim
N→∞

PN (t) = y(t), ∀t ∈ I.
We know that

M∑

i=0

R2(ti, T
0
N (ti)) ≤

M∑

i=0

R2(ti, PN (ti)),

hence

lim
N→∞

(
M∑

i=0

R2(ti, T
0
N (ti))) ≤ lim

N→∞
(
M∑

i=0

R2(ti, PN (ti))).

We conclude that lim
N→∞

R2(ti, T
0
N (ti)) = 0, i = 0,M.
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In that way we obtain the polynomial T 0
N (ti) which approximates the solution

of the problem (1 - 2).

3 Applications

Application 1

We consider A(t) = t3, B(t) = −2t4, f(t) = t5 + 1 and k = 0, obtaining the
problem ([3]):

{
Dαy(t)− t3y2(t) + 2t4y(t) = t5 + 1

y(0) = 0,
for t ∈ [0, 1]; 0 < α ≤ 1 (13)

Case α = 1 :

The exact solution of this problem for integer order α = 1, is y(t) = t ([3]).

Using the LSDQ method we computed a solution of the type (10):

P1(t) = d0 + d1 · t.
Taking into account the initial condition P1(0) = 0, we obtain d0 = 0, and the
approximation becomes: P1(t) = d1 · t.
The corresponding remainder (5) in this case is :

R(t, P1(t)) = −d21t5 + 2d1t
5 + d1 − t5 − 1

and the functionalJ (11) is:

J (d̃1) = d̃41 − 6d̃31 + 13d̃21 − 12d̃1 + 4.

We will find the value of d̃1 by minimizing this functional. In order to do that
we will first find the critical points as the solutions of the equation: J ′(d̃1) = 0
and a simple computation shows that the minimum value is d̃1 = 1. Thus we are
able to obtain the exact solution of the problem: ỹ(t) = t.

Case 0 < α ≤ 1 :

Using the steps outlined in the previous section, we computed the following ap-
proximate solutions by LSDQ Method of the problem (12) :
- first order polynomial for α = 0.9 ỹ(t) = 0.953415t;
- first order polynomial for α = 0.8 ỹ(t) = 0.923537t;
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- first order polynomial for α = 0.7 ỹ(t) = 0.905487t;
These approximate analytical solutions by the Least Squares Differential Quadra-
ture Method are presented the Fig. 1:

Figure 1: The LSDQM solution for Application 1 with α ∈ (0, 1]

Application 2

Choosing A(t) = −1, B(t) = 0, f(t) = 1, and k = 0, the problem (1-2) becomes
([3]): {

Dαy(t) + y2(t) = 1

y(0) = 0,
for t ∈ [0, 1]; 0 < α ≤ 1 (14)

The exact solution of this problem for integer order α = 1 is given as: y(t) =
e2t − 1

e2t + 1
([3]). Following the LSDQM steps presented in the previous section, we

compute a fifth degree polynomial approximate solution of the type (10):

P5(t) = d0 + d1 · t+ d2 · t2 + d3 · t3 + d4 · t4 + d5 · t5.
Using the boundary condition we obtain d0 = 0 and the remainder operator is:

R(t, P5(t)) =
(
d1t+ d2t

2 + d3t
3 + d4t

4 + d5t
5
)2

+d1+2d2t+3d3t
2+4d4t

3+5d5t
4−1.

We consider the partition ∆100: 0 = t0 < t1 < · · · < t100 = 1 with equidistant
points ti = ti−1 + h, where h = 0.01.
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Next we attach to the problem (14) the functional

J (d̃1, d̃2, d̃3, d̃4, d̃5) =

100∑

i=0

R2(ti, P5(ti))

(too long to be included here).
By minimizing this functional we find d̃1, d̃2, d̃3, d̃4, d̃5. Replacing this values in
the last expression of P5(x) we obtain the analytical approximate solution of the
problem (14) by LSDQM as:

ỹ(t) = −0.0169741t5 + 0.187308t4 − 0.42752t3 + 0.0201815t2 + 0.998592t.

We also solved the problem using a polynomial approximation of seventh de-
gree and following the steps described above, we obtain the analytical approximate
solution:

ỹ(t) = 0.0218375t7 − 0.122277t6 + 0.226193t5 − 0.0385853t4 −
− 0.324675t3 − 0.000934549t2 + 1.00004t.

Making an approximation with a polynomial of ninth degree we obtain the
following analytical approximate solution:

ỹ(t) = −0.0106499t9 + 0.0567198t8 − 0.103159t7 + 0.0253077t6 + 0.125355t5 +
+ 0.00150336t4 − 0.333491t3 + 7.886787623886357× 10−6t2 + 1.0t

In Table 1 we present the comparison between the solutions obtained by Least
Squares Differential Quadrature Method (LSDQM) and the solutions obtained by
H. Singh and H. Sirvastava in ([3]) using the Jacobi collocation method (JCM),
by B. Batiha et all in ([6]) using the Variational iteration method (V IM) and by
Z. Odibat using a modified homotopy perturbation method (MHPM).

In the Figure 2 we present the error obtained for the approximation with nine
degree polynomial for the solution ỹ(t) for t ∈ [0, 1].

Using LSDQ Method we computed the following approximate solution for:
0 < α ≤ 1, the approximate solution being of polynomial type of nine degree:

• for α = 0.9 , ỹ(t) = 22.895t9−113.364t8+237.882t7−275.595t6+192.552t5−
83.2439t4 + 22.0942t3 − 4.00524t2 + 1.53857t

• for α = 0.8 , ỹ(t) = 29.9235t9−161.836t8 +371.86t7−473.01t6 +363.877t5−
173.923t4 + 51.5883t3 − 10.0314t2 + 2.29541t
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Table 1: Comparison of absolute error from JCM, VIM, MHPM and LSDQ Method
for α = 1

t JCM V IM MHPM LSDQ5thdeg LSDQ7nddeg LSDQ9thdeg

0.1 4.57 · 10−9 5 · 10−11 0 1.59 · 10−5 1.44 · 10−7 1.23 · 10−9

0.2 9.74 · 10−10 4.39 · 10−9 0 2.43 · 10−5 1.71 · 10−7 2.14 · 10−10

0.3 3.71 · 10−9 1.56 · 10−7 1.10 · 10−6 1.41 · 10−5 5.6 · 10−7 3.78 · 10−10

0.4 1.29 · 10−9 1.97 · 10−6 5.01 · 10−6 2.32 · 10−5 2.55 · 10−8 3.52 · 10−9

0.5 1.93 · 10−9 1.38 · 10−5 3.91 · 10−5 3.95 · 10−5 2.55 · 10−7 1.71 · 10−9

0.6 2.74 · 10−9 6.61 · 10−5 1.93 · 10−4 1.82 · 10−5 1.80 · 10−7 1.10 · 10−9

0.7 4.32 · 10−9 2.43 · 10−4 7.37 · 10−4 1.58 · 10−5 4.27 · 10−7 4.08 · 10−9

0.8 2.43 · 10−9 7.35 · 10−4 2.33 · 10−3 2.18 · 10−5 1.14 · 10−8 2.38 · 10−9

0.9 3.59 · 10−10 1.91 · 10−3 6.37 · 1036 1.05 · 10−5 8.92 · 10−8 1.81 · 10−9

Figure 2: The absolute error corresponding to ỹ(t) for the case α = 1 in Eq (14)

• for α = 0.7 , ỹ(t) = 19.9911t9−147.74t8+423.678t7−637.806t6+560.682t5−
298.769t4 + 96.9138t3 − 19.5875t2 + 3.36745t

In the Figure 3 we have plotted the approximate solutions for α = 0.7, 0.8, 0.9 and
1.

Application 3

Our third application is the following Riccati differential equation of fractional
order with initial condition:

{
Dαy(t) + y2(t)− 2y(t) = 1

y(0) = 0,
for t ∈ [0, 1]; 0 < α ≤ 1 (15)
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Figure 3: The LSDQM solution for Application 2 with α ∈ (0, 1]

For α = 1 the exact solution of the problem is ([3]):

y(t) =
√

2 tanh

(
√

2t+
1

2
log

(√
2− 1

1 +
√

2

))
+ 1.

In this case (equation (15) for α = 1), by using LSDQM we computed the following
approximate solution:
ỹ(t) = 0.225567t9 − 1.37073t8 + 2.94539t7 − 2.49398t6 + 0.64701t5 − 0.640656t4 +
0.380312t3 + 0.996486t2 + 1.0001t.
Figure 4 presents the absolute error corresponding to our approximate solution
ỹ(t) as the difference in absolute value between the approximate solution and the
exact solution for the case α = 1.

In Table 2 we present the comparison between the Least Squares Differential
Quadrature Method (LSDQM) solution and the solutions obtained by H. Singh
and H. Sirvastava in ([3]) using Jacobi collocation method (JCM), B. Batiha et
all in ([6]) using Variational iteration method (V IM) and F. Mabood et all in ([8])
using optimal homotopy asymptotic method (OHAM).

Using LSDQ Method we computed the following approximate solution:

• for α = 0.9 , ỹ(t) = 21.6719t9−106.446t8+220.499t7−251.061t6+172.905t5−
75.3353t4 + 19.9157t3 − 1.93746t2 + 1.5514t

• for α = 0.8 , ỹ(t) = 38.1977t9−195.105t8+424.005t7−512.343t6+377.939t5−
174.904t4 + 48.2756t3 − 6.6356t2 + 2.3775t
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Figure 4: The absolute error corresponding to ỹ(t) for the case α = 1 in Eq (15 )

Table 2: Comparison of absolute error from JCM, VIM, OHAM and LSDQ Method
for α = 1

t JCM V IM OHAM LSDQM

0.1 7.45 · 10−7 1.98 · 10−8 3.2 · 10−5 6.13 · 10−8

0.2 8.51 · 10−7 1.03 · 10−6 2.90 · 10−4 1.37 · 10−6

0.3 9.30 · 10−7 8.85 · 10−6 1.10 · 10−3 1.23 · 10−7

0.4 1.08 · 10−6 3.33 · 10−51 2.50 · 10−30 4.75 · 10−7

0.5 1.14 · 10−6 7.26 · 10−5 4.40 · 10−30 1.68 · 10−6

0.6 1.14 · 10−6 9.96 · 10−5 5.50 · 10−30 5.63 · 10−7

0.7 1.21 · 10−6 8.84 · 10−5 5.51 · 10−3 2.90 · 10−7

0.8 1.04 · 10−6 1.54 · 10−5 3.80 · 10−3 1.48 · 10−6

0.9 1.13 · 10−6 4.95 · 10−4 3.20 · 10−3 2.91 · 10−7

1 4.84 · 10−7 3.47 · 10−3 3.40 · 10−3 8.37 · 10−7

• for α = 0.7 , ỹ(t) = 32.9146t9−197.034t8+495.78t7−685.108t6+567.588t5−
286.392t4 + 83.9888t3 − 13.5326t2 + 3.61622t

In the Figure 4 we have plotted the approximate solution for different value of
α = 0.7, 0.8, 0.9 and 1.
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Figure 5: The LSDQM solution for Application 3 with α ∈ (0, 1]

4 Conclusions

In the present paper we obtained analytical approximate solutions for several Ric-
cati differential equations of fractional order using the Least Squares Differential
Quadrature Method. Using the LSDQM one obtains the analytical solution of the
equations, not only numerical solutions, fact which demonstrates the usefulness
of the (LSDQM). The applications presented clearly illustrate good concordance
between the LSDQM solutions and other approximate solutions.
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E-mail: madalina.pasca79@e-uvt.ro



STATISTICAL ANALYSIS OF MINIMUM OIL
CIRCUIT BREAKER FAILURES
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Abstract

In this paper, remaining useful life (RUL) of circuit breakers (CB) has
been analyzed, based on statistical data gathered during CB’s maintenance.
Using statistical data of 427 CBs gathered in past 10 years, Weibull prob-
ability distribution of contact resistance for breakers on both overhead and
underground feeders and voltage levels of 35 kV and 10 kV is determined.
With this methodology CB’s condition can be observed by using real field
data which are collected regullary during power station revision. 1

Keywords and phrases: circuit breaker, remaining useful life, voltage drop,
Weibull distribution

1 Introduction

Circuit breaker is a device used for switching feeder power supply in any working
mode (normal load, no load, short circuit current. . . ), and therefore represents
the vital element of power system operation. CB failure threatens work of other
equipment, which directly affects reliability of whole substation. This makes good
reason of analyzing CB working behavior and its RUL.

To determine economic effects of maintenance, overhaul or CB removal [1],
[2], assessment of circuit breakers remaining useful life (RUL) must be done [3],
[4]. Remaining useful life is the lifetime from current time to the time that the
device fails [1]. It is random variable which depends on various factors (device age,
working conditions, and level of maintenance) [5]. If the failure time of the pop-
ulation follows the probability density function (PDF) f(t), then the population
mean time to failure (MTTF) can be calculated by (1):

MTTF =

∫ ∞

0
tf(t)dt =

∫ ∞

0
R(t) (1)

1PACS: 84.70.+p
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R(t) is the survival function at t. Let define Xt as the random variable of
the RUL at time t, then the probability density function (PDF) of Xt conditional
on Yt is denoted as f (xt/Yt) where Yt is the history of operational information
up to t. If Ytis not available then the estimation of f (xt/Yt) is:

f(xt/Yt) = f(xt) =
f(t+ xt)

R(t)
(2)

where f(t + xt) is the PDF of the life at t + xt

CB’s reliability analysis depends of type of available data, which can be: con-
tact resistance, commutation noise, erosion resistance, ultrasound detectors, tran-
sient earth voltage, infrared thermo scanning, CB control circuit data and col-
lected data of CB faults. Depending of collected data type, RUL can be assessed
with: knowledge-based models (fuzzy method); life expectancy models (statistical
method [5] – [9]); artificial neural networks and physical models [4].

Utilities, grid operators and industrial power consumers are facing unprece-
dented challenges. With increasingly aging infrastructure combined with cost-
cutting pressures to operate into today’s competitive environment, prioritizing
investment has never been so important.

Because of importance of reliability, some companies are started to use soft-
ware, algorithms and analysis techniques for reliability management services to
provide substation owners with the right insights to make optimal investments to
improve system performance.

2 CB Ageing Process

The main causes of CB deterioration are the age, the number of operations under
normal and fault conditions and the operational conditions like the temperature
and contaminants content.

Measuring the contact resistance is usually done by using the principles of
Ohm’s law. Since the interrupting chamber is a closed container, we have only
access to the entry and exit conductors; the measured R between these two points
would be the sum of all the contact resistances found in series. According to the
IEC 60694 [10], article 6.4.1, the current value to use should be the closest to the
nominal current the interrupting chamber is designed for. If it is impossible to do
so, lower currents can be used but not less than 50 A to eliminate the galvanic
effect that might affect the readings.
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2.1 Data collecting

Analysis in this paper covers 42 35/10 kV substations of Serbian state owned
utility ”EPS Distribucija” and 427 circuit breakers, mounted on 10kV and 35kV
feeders. Measurement of static contact resistance presented by the voltage drop
on contacts is collected in past 10 year period (2007 – 2017), where voltage drop
was measured every two years.

Other data regarding to circuit breakers that are collected are: voltage level,
feeder type, manufacturing year, number of fault trips, number of short circuit
current trips, number of customers, and annual consumption.

Depending on CB’s nominal current and nominal voltage allowed voltage drop
goes from 3.5 mV up to 14 mV [11]. Analyzed CBs have following maximal
voltage drop values: 35 kV CB’s: 3.5 – 7 mV; 10 kV CB’s: 7 – 14 mV.

Manufacturer manual [11] states that CB must be completely overhauled after:
10-12 years of service, or 5000 operations, or 6 short-circuit currents breaking.

Measurement has been done with DC current of I = 100A, measuring voltage
drop on every CB’s pole. Figure 1 shows voltage drop distribution among all
currently available data, with values divided into 4 categories depending of voltage
drop level.

Figure 1: Voltage drop distribution on analyzed circuit breakers
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2.2 Data analyzing

In the first step, state of every CB is determined, according to its voltage drop
value. CBs with voltage drop value beyond permissible are set in ”failed” state (F),
and those which still have voltage drop value below allowed are in ”suspension”
state (S). For failed CB’s, the precise year of reaching that condition is defined.
Such data are divided into following categories:

1. Circuit breakers on 35 kV feeders

2. Circuit breakers on 10 kV feeders

3. Circuit breakers on overhead feeders

4. Circuit breakers on underground feeders

5. All circuit breakers

From manufacturers manual [11] allowed voltage drop values are dependent on
CB’s rated voltage and rated current, and manufacturer allows them to surpass
the permissible value for 25%. For that reason, CB’s are also analyzed for two
different criterions:

1. Maximal allowed voltage drop value is as in manufacturers table,

2. Maximal allowed voltage drop is 25% greater than recommended values.

That way, impact on CB’s condition for both criterions is taken into account.

Obtained correlation coefficients in the curve fitting process are showing the
great correlation to the Weibull probability distribution. The closer the value of
Rho is to 1, the better the linear fit. Values of Rho are presented in Table I.

Correlation Coefficient [12] is a measure of how well the linear regression model
(the probability line) fits the data. In the case of life data analysis, it is a measure
of the strength of the linear relation (correlation) between the median ranks and
the data. The population correlation coefficient is defined as follows:

ρ =
σxy
σxσy

(3)

where σxy is the covariance of x (times-to-failure) and y (median ranks), σx
is the standard deviation of x, and σy is the standard deviation of y.
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Table 1: Correlation coefficient values

Feeder type Correlation
Coefficient
Rho (ρ)

overhead +25% 0.985203

overhead 0.992959

underground +25% 0.975994

underground 0.964724

10 kV +25% 0.988244

10 kV 0.989144

35 kV +25% 0.972266

35 kV 0.983755

all feeders +25% 0.988580

all feeders 0.990089

The estimator of ρ is the sample correlation coefficient, given by:

ρ̂ =

∑N
i=1 xiyi −

∑N
i=1 xi

∑N
i=1 yi

N√(∑N
i=1 x

2
i −

(
∑N
i=1 xi)

2

N

)(∑N
i=1 y

2
i −

(
∑N
i=1 yi)

2

N

) (4)

Weibull distribution function (5) is two-parametric distribution, with slope
parameter η and shape parameter β.

F (t) = 1− e
(
t
η

)β
(5)

Slope parameter shows time at which 63.2% of analyzed units are failed. Shape
parameter represents failure rate behavior. Its value tells whether failures are
decreasing or increasing. β<1 indicates infant mortality, while β>1 shows wear
out failures. Higher value of beta indicates greater rate of failure. Both β and η
parameters are calculated for the whole CB population from the statistical data
using the least square method [13]. Results are presented in Table II.

Weibull distribution function with right censored data (case when some de-
vices didn’t fail during period of analysis) unreliability is calculated for all CB’s
categories. On figures 2-5 unreliability distribution of different criterions is shown.

By observing Weibull parameters two conclusions could made, underground
feeders (both criteria of voltage drop value limit) have highest β while overhead
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Table 2: Weibull parameters

CB feeder type η β Fail \Suspend

Overhead +25% 39.1 5.2 100 \87

Overhead 37.1 4.8 131 \56

Underground +25% 41.5 6.1 63 \169

Underground 38.1 6.1 97 \135

10 kV feeders +25% 43.4 5.6 87 \224

10 kV feeders 40.4 5.1 135 \176

35 kV feeders +25% 35.2 5.6 79 \31

35 kV feeders 33.8 5.6 96 \14

feeder have lowest value. Considering η parameter, 10 kV feeders (+25% limit
voltage drop level) have closer time to failure, while 35kV feeders have lowest η
value.

Figure 2: Weibull unreliability distribution for CB’s on overhead feeders
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Figure 3: Weibull unreliability distribution for CB’s on underground feeders

Figure 4: Weibull unreliability distribution for CB’s on 10 kV overhead feeders
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Figure 5: Weibull unreliability distribution for CB’s on 35 kV overhead feeders

3 Conclusion

The determination of CB remaining useful life is a complex procedure depend-
ing on various stochastic factors, including the current flowing through the CB,
breaking current intensities, number of operations and operational conditions as
well. In this methodology, RUL is determined implicitly, by the assessment of risk
of failure from keeping the CB in operation, with the diversification of normal and
abnormal operation conditions.

The total of 427 circuit breakers has been monitored, with data gathered
in past 10 years. After the statistical tests, parameters for Weibull probability
distribution of contact resistance for breakers on both overhead and underground
feeders were determined. Weibull probability distribution of contact resistance
for breakers on both overhead and underground feeders and voltage levels of 35
kV and 10 kV proved to be the best fit.

The proposed methodology requires historical data of different control param-
eter measurement and proved to be useful when the changes of breaker operational
conditions are expected. The statistical analysis showed that the dominant feeder
type (overhead or underground) has a great influence on probability of failure,
and that these conditions must be taken into account in a quantitative way.
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Abstract

In this paper, it is presented the influence of an external cylindrical dielec-
tric body on the homogeneous electrostatic field. To obtain a homogeneous
electrostatic field, a system of four charged parallel electrodes was installed
on the imaginary cylindrical surface of the radius R (primary cell of the first
order). Expressions for the field within and outside the external body are
obtained using the Image theorem in cylindrical dielectric mirror. Special
attention was dedicated to the 2D view of the field in the cross-section of the
system. 1

Keywords and phrases: dielectric cylindric, electrostatic systems, isotropic
dielectric body, plan-parallel primary cell, uniform electrostatic field

1 Introduction

The problem of generating homogeneous electric fields is quite old [1, 2] but still
actual [3-10]. To generate a homogeneous field, charged rings [1, 3, 4, 6], systems
based on plan-parallel electrodes [2, 5, 8-10], conical electrodes [4, 7], charged
culotte [3], etc.

The influence of the external spherical body on the achieved homogeneity of
the field in the example of rings was considered in [6], whereas the influence in the
example of biconical systems is considered in [7]. An analysis of the influence of
an external cylindrical conducting body on the achieved homogeneity of the field
in the case of plan-parallel system is performed in [8], as well as in [10], where a
special emphasis was placed on an external body made of bi-isotropic material.

In this paper, it is performed a detailed analysis of the influence of cylindrical
external body made of isotopic dielectric material on the achieved homogeneity of

1PACS: S2.35.Fp; 78.20.Ci
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the field, which is generated using a system of two pairs of electrodes which are
loaded with the same amount of charges per unit length but of opposite sign.

System dimensions are selected so that a homogeneous electrostatic field is
obtained in the central region of the system (plan-parallel first-order cell). The
emphasis of the paper is on the qualitative representation of the field distribution
in the cross-section of the observed system.

2 Image theory for the dielectric cylinder

In Figure 1, it is shown the cross-section of the system, consisting of the primary
plan-parallel cell of the first order, which is used for generating homogeneous elec-
trostatic field [5] and external dielectric body of cylindrical shape in homogeneous
field, whose axis coincides with z -axis od the system. Dimensions of the primary
cell are h/R = cos (α) and d/R = sin (α)[5], where R represents the radius of
the imaginary cylinder according to which are placed the plan-parallel charged
electrodes. Parameter a is the radius of the dielectric body permittivity ε = ε0εr,
while the exterior medium is assumed to be air,

ε0 =
10−9

36π

F

m
.

Figure 1: Cross section of the plan parallel primary cell with external dielectric
body

In the case when the external body does not exist the potential ϕ, at the point
M, is given by
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ϕ(x, y) =
q′

2πε
ln
r1r2
r3r4

, (1)

where r1, r2, r3 and r4 denote the distances between the axis of primary cell con-
ductors and observed point.

In the case when α = π/3 in the central region of the primary plan-parallel
cell of the first order, electric field is practically homogeneous and equal to [5]:

E(0, 0) =
q′
√

3

πεR
(2)

When the Image theorem is applied in dielectric cylindrical mirror for the
system in Figure 1, then the equivalent charge system that generates an electric
field in the area outside the cylinder (r>a), consists of original charges per unit
length q′ and -q′and their images βq′ and −βq′, positioned along the cylindrical
surface of the radius D = a2

/
R in the air, ε0 (Figure 2). Constants A and B

depend on the permitivity of the cylindrical body [12]

β =
ε0 − ε
ε0 + ε

(3)

Figure 2: Equivalent system of charges and their images in the air for determining
the electric field in the area outside the cylinder r > a

For the calculation of the electric field inside the dielectric cylinder (r<a), the
equivalent charge system is placed in the dielectric medium, and it consists of
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images γq′ and −γq′, located at the positions of the original conductors of the
plan-parallel cell, Figure 3, where

γ =
2ε

ε0 + ε
. (4)

Figure 3: Equivalent charge system placed into dielectric for determining electric
field in the region inside cylinder, r < a

The procedure for determining the field inside dielectric cylinder, placed in a
homogeneous field is described by using the cylindrical coordinate system (r, θ).

The function of scalar potential inside the cylinder in homogenous electric field of
intensity E(0, 0), is described as it follows:

ϕ = − 2ε

ε+ ε0
r E(0, 0) cos (θ) , for r ≤ a. (5)

As y = r cos (θ) in the coordinate system in Figure 1, the field inside the
cylinder is homogenous and it has y-component only.

Ey =
2 ε

ε+ ε0
E(0, 0). (6)

Thus, the field inside the dielectric cylinder is homogeneous and less than the
field outside the cylinder.

Figure 4 and 5 - 2D presentation of the normalized electric field for plan
parallel primary cell without and with external body
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Figure 4: Normalized electric field
for plan parallel primary cell with-
out body

Figure 5: Normalized electric field
for plan parallel primary cell with
perfectly conducting body

Figure 6: Normalized electrostatic field along y - axis of the system with external
dielectric cylindrical body, for different values of εr

3 Numerical results

In the present paper, for generating homogeneous electrostatic field is exploited
primary cell of the first order whose dimensions are h/R = 0.5 and d/R ∼= 0.866[5].
In Figure 4 it is shown 2D distribution of the generated homogeneous electric field,
E(x, y)/E(0, 0), for the system in Figure 1 in the case without external body,
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whereas the case when external conducting body of cylindrical shape and radius
a/R = 0.2 is placed in the center of the system is shown in Figure 5 [8, 10]. The
conducting body in its vicinity disrupts homogeneity of the field, whereas inside
the conducting body the field is equal to zero.

Figure 6 shows normalized values of the electric field intensity along the axis
of the system in the case when dielectric body is inserted in homogeneous field
and placed as in Figure 1, where dielectric constant of the body, εr, is a parameter
[10]. It can be noticed that as the dielectric constant increases, the intensity of the
field inside the body decreases and tends to zero, whereas outside the dielectric
cylinder the intensity of the field converges as in the case of the conductive body.

In order to better understand the extent to which the dielectric constant of
the body affects the achieved homogeneity of the field, in the same figure it is
shown the normalized ratio of the electric fields in the absence of a external body,
as well as in the presence of a perfectly conductive external body. The obtained
results show that, in electrostatic terms, dielectrics with a large dielectric constant
can be considered as conductors (εr>40), and vice versa, that perfect conductors
can be considered as a dielectric whose dielectric constant in ideal case tends to
infinity.

2D distribution of the electric field in the cross-section of a system for gener-
ating a homogeneous electric field with an external body of the radius a/R = 0.2,
in the case when εr = 2 is shown in Figure 7, whereas the case εr = 50 is shown
in Figure 8.

By comparing the obtained results, it can be seen that in the case εr = 50,
field distribution is approximately the same as in the case of the conductive body,
Figure 5, which can be explained by the fact that due to large dielectric constant,
a dielectric body behaves approximately like a conductive body.

Figure 7: Normalized electric field in
the presence of external body
(εr = 2)

Figure 8: Normalized electric field in
the presence of external body
(εr = 50)
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Figure 7 and 8 - 2D presentation of the uniform electric field for plan-parallel
primary cell with dielectric body of radius a/R = 0.2 when: a) εr = 2;b) εr = 50.

In Figure 9 it is shown distribution of the electric field inside and outside
the external body of dielectric constant εr = 2 for various dimensions of external
body, a/R. As it could be expected, the body of larger dimensions disrupts the
homogeneity of the field in its vicinity to the larger extent, whereas inside the body
the field is homogeneous and it is lower than the field intensity on the surface of
the body.

Figure 9: Normalized electric field along y axis using one primary cell without
and with dielectric cylindrical body for different dimensions a/R and εr = 2

4 Conclusion

In this paper, we have analyzed the influence of the external dielectric cylindrical
body, placed in the center of the plan-parallel cell of the first order, on the achieved
homogeneity of the field. By using Image theorem in cylindrical dielectric mirror
we have obtained equivalent system of charges to determine the field inside and
outside of the external body.

It is considered 2D distribution of electric field in the following cases: without
external body in the homogeneous field and when there is an external body. In
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the second case, the body can be made using dielectric materials of various per-
meabilities or it can be conducting body. We have observed how various types of
dielectrics and dimensions of the body disrupts achieved homogeneity.

As it could be expected, electric field inside conducing body, which is placed
in homogeneous electric field, is equal to zero, whereas the field iz homogeneous
and less than the field outside the body inside dielectric body.

Also, it can be noted that with increasing dielectric constant of the external
body, achieved homogeneity is disrupted to the larger extent, and that distribution
of the field tends to the distribution of the field in the case of conducting body of
the same dimensions.
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Abstract

The aim of this paper is to present a way of visualisation of the magnetic
field created by permanent magnets or wires and loops carrying direct current.
Visualisation is achieved by using so called magnetic field viewer - a special
magnetic sensing film. Except visualisation of the magnetic field around the
magnetic object, measurements of magnetic flux densities are performed using
a Hall sensor. Also, a number of simulations of coils carrying direct current
in FEM software have been made in order to check a validation of the visual-
isation effects obtained. The paper shows photographs of visualised magnetic
fields and the results of measurements and simulations, as well as a proper
discussion. 1

Keywords and phrases: hall sensor, magnetic field viewer, static and sta-
tionary magnetic field, visualisation

1 Introduction

Magnetic fields can be created by permanent magnets or conductors carrying di-
rect current, while its presence can be observed by appearance of force on other
magnets or conducting bodies placed inside the field [1]. However, the magnetic
field distribution cannot be easily seen, while it can be calculated or simulated [1].
One way of magnetic field visualisation is to use ferro fluids [2]. Also, with the
aim of field visualisation, magnetic field viewing films were produced [3]. They
show the magnetic field by showing its location and direction. Magnetically sensi-
tive nickel particles in this film change their positions based on the intensity and
orientation of the applied magnetic field. The particles will be shown as brighter
regions if the magnetic field is parallel to the surface of the film and darker regions

1PACS: 07.55.Db
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if the field is orthogonal to the film surface [2]. The shade of these regions depends
on the intensity and direction of the magnetic field.

Experiments were conducted with permanent magnets and coils of different
shapes. A photograph of permanent magnets and photographs of a magnetic
viewer placed above these magnets and coils are presented in the paper, as well as
a proper discussion. A part of the results obtained for coils carrying direct current
is compared with the results obtained by FEM software. Moreover, results of
measurements of magnetic flux density using a Hall sensor are given in the paper.

2 Theoretical Approach

Neodymium permanent magnets have been used for creating a static magnetic
field [4], while coils carrying direct current have been used for creating stationary
magnetic field. Different values of direct currents have been set in order to obtain
different intensities of magnetic field created. These fields have been visualised
with the magnetic field viewer, by placing it above the magnets and coils. Hall
sensor has been used for measurement of magnetic flux density around the coils.
FEM software has been used for simulations of magnetic field produced by coils.
Geometry of coils, number of turns and values of direct current in the simulations
were identical as for the real experiments performed with coils.

2.1 Results

Figure 1 shows a photograph of arrangement of permanent magnets used in the
experiment, as follows: two magnets of the square surface placed next to each
other, one curved magnet and fifteen cylindrical magnets placed next to each
other. Figure 2 shows a photograph of a magnetic viewer placed above permanent
magnets from Figure 1. It can be seen from Figure 2 that surfaces of the magnets,
as well as the close surroundings of the magnets, are shaded dark, while the areas
between magnets or close to its edges are much brighter (for two magnets with
square surface). In the case of curved magnet bright line can be seen in the middle,
which means that this magnet actually consists of two magnets (this cannot be
observed by usual visual inspection).

On the other hand, for the arrangement of cylindrical magnets bright lines do
not appear in the places where magnets touch each other, but they appear in the
places slightly closer to the touching surfaces between magnets and magnetic film.
Thus, appearance of darker or brighter regions and lines depends also on the shape
of the magnet.

Figure 3 shows the photographs of the magnetic viewer placed above arrange-
ment of two square permanent magnets (12 mm by 12 mm, 5 mm high) used in
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Figure 1: Photograph of permanent
magnets

Figure 2: Photograph of mag-
netic viewer placed above perma-
nents magnets

Figure 3: Photographs of permanent magnets inside plastic holder and correspond-
ing photographs of magnetic viewer when magnets attract and repel
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the experiment, as follows: two magnets of square surface placed in plastic hold-
ers with three different sizes of gap (15 mm, 20 mm and 25 mm) between these
magnets (in the right side). Magnets have been arranged so that in one case they
attract each other and in another case they repel. Both cases have been visualised
with magnetic viewer and the corresponding photographs are presented in Figure
3. Left part of the figure shows magnetic field of the magnets when they repel and
middle part shows magnetic field of the magnets when they attract.

One significant difference can be observed in the area between two magnets.
During the repelling, magnetic viewer shows a dark area between magnets, which
means that the magnetic field is almost normal to the plane of magnetic viewer.
The same area is mostly bright during the attraction, which means that the mag-
netic field is almost parallel to the plane of magnetic viewer.

Two coils have been made by winding a copper wire on plastic holders of
circular and square cross-section. A diameter of the circular holder was 30 mm
and 18 windings has been wound, while one side of the square holder was 25 mm
and 17 windings has been wound. Height of both coils is 5 mm.

Figure 4 shows the photographs of magnetic viewer placed above coils with
circular and square shape obtained for different values of direct currents from 0 to
20 A, in steps of 5 A (0 on the top and 20 A at the bottom). These photographs
show a gradual increase of intensity of the dark area, corresponds to the internal
area constrained by the coil, which indicates the appearance of magnetic field
mostly normal to the plane of magnetic viewer. This dark area is surrounded by
brighter area, corresponds to the area of the coil itself, which indicates a presence
of a mostly horizontal magnetic field. Outside of this brighter area there is again
darker area, but with lower intensity.

Models of coils of the same geometry and number of turns as real coils have
been created in FEM software, as it is presented in Figure 4 for square coil.

A number of simulations have been made with the same values of direct current
as for actual experiments. Several results have been obtained from these simula-
tions, such as: plots of magnetic flux density in the horizontal plane just above the
coil, the plot of the magnetic flux density vector in the vertical plane and graph of
horizontal and vertical component of magnetic flux density in the vicinity of the
coil. Plots of magnetic flux density in the horizontal plane (xyplane in Figure 5)
have been grouped in the same manner as for the experiment and they are pre-
sented in Figure 6. These plots are very similar to photographs given in Figure 4
and they confirm previously made observations of magnetic field around the coil.

Figure 7 presents plot of magnetic flux density vector in the vertical plane (xz
plane in Figure 5) that contains the vertical axis of square coil. This plot shows
that inside internal area surrounded by the coil the vector of magnetic flux density
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Figure 4: Photographs of magnetic viewer above circular and square coil with direct
current of different levels

Figure 5: Model of square coil
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Figure 6: Plots of magnetic flux density obtained from simulations

is vertical, while closer to the coil it changes direction and just above the coils it
becomes horizontal. Furthermore, it can be observed that vector is also vertical
outside the coil, but with smaller intensity. All this supports observations given
for photographs in Figure 4.

Figure 8 presents variation of horizontal Bx and vertical Bz component of
magnetic flux density across the horizontal line parallel with y axis, at height z
equal to half of height of coil (Figure 9). Graphs in Figure 8 have been obtained
at direct current of 10 A.

Several measurements of magnetic flux density have been made with both coils
in order to check the quality of simulation. Hall sensor has been placed in the
centre of the coils, at the height equal to the half of the height of the coil. Direct
current has been set to 5 A and 10 A in these measurements. The results of
the vertical component of magnetic flux density are given in Table I. The relative
difference between results obtained is around 3 % for circular coil and around 12 %
for square coil.

This difference is acceptable and measurements confirm simulations, even for
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Figure 7: Vector plot of magnetic flux density around square coil

Figure 8: Variation of magnetic flux
density components: circular coil

Figure 9: Variation of magnetic flux
density components: square coil

square coil where difference is higher. Such result can be expected since real coil
is not a real square and it is not produced with high precision.

3 Discussion

Several advantages and disadvantages in application of magnetic viewer have been
observed during performed experiments. The advantages are: fast “reaction” on
the gradual variation of magnetic field created by the coils and stability of the
shade and good reproducibility. The disadvantages are: relatively high level of
lowest magnetic field that can be detected (starting from about 1000 A/m), effect
of saturation - at higher magnetic field viewer almost stops to be darker and
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Figure 10: Horizontal line above square coil

Table 1: Comparison of measured and simulated results for vertical component of
magnetic flux density

I
[A]

Bz [mT]

Square Circle

Hall FEM Hall FEM

5 2.89 3.35 3.05 3.14

10 5.92 6.70 6.13 6.29

darker, glossy surface reflects light from point sources (like flashes and lamps) -
so it is not easy to make a proper photograph, plastic foil is not resistant to high
temperatures, bending and scratching, parts of the viewer disposed to magnetic
field stays slightly dark after removing of magnet or coil - erasing of dark spots is
needed.

An improvement of the experiment described could be made if digital camera
and personal computer with adequate software for image acquisition and processing
were used. The idea would be to capture a photograph of magnetic viewer placed
above the magnetic object that creates known or measurable magnetic field. In
the next step, the software would calculate the shade and link it with a certain
value of magnetic flux density. Up to ten such measurements would be enough
to perform calibration of magnetic viewer. Later, non-uniform magnetic field of
other objects could be measured/calculated by processing of photograph.
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4 Conclusion

This paper presents the results of visualisation of magnetic field created by per-
manent magnets and coils carrying direct current. This has been achieved using
magnetic field viewing film - flexible sheet coated with nickel particles. Coils of
the same geometry and number of turns have been simulated in FEM software
and results of simulations have been presented. Furthermore, results of measure-
ments of magnetic flux density around coils have also been presented. A proper
discussion of all results has been given.

Magnetic viewing film can be successfully used for educational purposes, while
its application in real scientific research need to be further examined.
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