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STUDY ON LONG-TERM CHANGES IN THE
ELECTROMAGNETIC ENVIRONMENT USING
DATA FROM A CONTINUOUS MONITORING

SENSOR

Ileana-Roxana TUTELCĂ

Abstract

With the proliferation of base stations through mobile telephony develop-
ment projects, as well as the diversification of telecommunications services,
medical technology, and household appliances, there has been increasing con-
cern among the population regarding the excessive use of electromagnetic
fields. This concern is also due to the absence of direct perception of elec-
tromagnetic phenomena. The perception of the presence of a high-intensity
electromagnetic field is indirect, through mechanical, thermal, optical, and
acoustic effects. This paper aims to analyze the evolution of the electromag-
netic field in the environment and consequently human exposure to it over
a one-year period, from September 2022 to September 2023. The study is
based on data collected from a non-ionizing radiation monitoring sensor in
Timişoara. We used the Holt-Winters and ARIMA methods for analysis and
prediction, and since the sensor includes frequency filters for separating re-
ceived frequencies, we analyzed three frequencies and a wide band. The study
shows a fluctuation over time of the electromagnetic field, without exceeding
the reference level according to OMS 1193/2006.

Index Terms-electric, electromagnetic, frequency, OMS, prediction

1 Introduction

Wireless communication technology has experienced rapid development, and along
with it, public concern regarding the perceived risk of exposure to electromagnetic
fields has increased. As concerns about exposure to electromagnetic fields have
grown, the first standards and regulations for protection against electromagnetic
radiation have been developed and implemented. The international organiza-
tion ICNIRP (International Commission on Non-Ionizing Radiation Protection)
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has contributed to the establishment of these standards. In 1999, the European
Union adopted ”Recommendation 1999/519/EC on the limitation of exposure of
the general public to electromagnetic fields ( 0 Hz to 300 GHz ).”[1]. Thus, in
Romania, this recommendation is transposed in the form of the ”Order of the
Minister of Public Health no. 1193/2006 for the approval of the Norms regarding
the limitation of exposure of the general population to electromagnetic fields from
0 Hz to 300 GHz ”[2], a document that is approved by (ICNIRP). Over time, re-
search in this field has continued to advance, and standards and regulations have
been updated and revised based on new discoveries and understandings regarding
the impact of electromagnetic fields on health and the environment.

The assessment of human exposure is a constant concern and is encountered
in specialized studies from various countries. A spatiotemporal model of radiofre-
quency field exposures has been evaluated in Chengdu [3], in China, to establish
if there are sources whose emission causes exposure above the relevant levels pro-
vided in guidelines and standards (ICNIRP şi GB 8702-014). The analyzed data
was collected from three categories of areas: commercial area, urban residential
area, and rural residential area, using a system installed on a car for two years.
No levels exceeding the established exposure limits were recorded.

Another study was conducted in a province of Turkey[4], For two years, tak-
ing into account the variations throughout the day. The study aimed to assess
the population’s exposure to radiofrequency fields in relation to the limits set by
ICNIRP and ICTA (Turkey’s Information and Communication Technologies Au-
thority). Following the analysis of the data, it was found that during the day, the
field levels were with 35, 4% higher compared to the levels during the night.

In Greece, there was a study [5] spanning a period of 20 years, regarding the
long-term changes in the electromagnetic field, using data obtained from monitor-
ing sensors and thus assessing human exposure to these fields. The study found
that there is a fluctuation in the radiofrequency electromagnetic field.

Results of measurements in outdoor, urban environments are highlighted in
the paper ”Prediction of RFEMF Exposure by Outdoor Drive Test Measure-
ments” [6], in which the artificial neural network (ANN) model was explored for
spatial reconstruction, with real data, of exposure to radiofrequency electromag-
netic fields. Measurements were taken on the electromagnetic field intensity in
Paris, covering a distance of 65 km , in a wide band. With the collected data,
two different models were constructed. An ANN1 model where the N nearest
base stations were considered regardless of their operator, and in another model,
ANN2, which contains base stations belonging to the same operator, grouped into
blocks, each block containing N = 3, 5, 7 base stations. At the end of the study,
it was found that the ANN1 model has better prediction quality as N increases
(for N = 7 ), but the processing time increases, and with the ANN2 model, there
is no improvement in prediction by increasing the number of base stations from 3
to 7 .
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2 Experimental setup and data collection

As part of the electromagnetic field monitoring project in urban areas with heavy
traffic, the data is made available to the public through the ANCOM platform
(National Authority for Management and Regulation in Communications)[7], sta-
tions are installed throughout Romania that continuously monitor and transmit
the data to the information platform every 24 hours.

The monitoring stations with fixed sensors are placed in public spaces, schools,
university centers, public squares, in the vicinity of which there are multiple
sources of radio emissions.

The equipment used for the continuous monitoring of the electromagnetic field
is of the Narda AMB 8059 type and meets the ITU-T K. 83 requirements for con-
tinuous multi-band monitoring of the electromagnetic field [8]. The Narda AMB
8059, a remotely controlled module, is equipped with a triaxial isotropic probe
that performs wideband measurements of the electric field (E) with a frequency
range of 100 kHz to 7 GHz (a range that includes the bands used in Romania for
5G), and three frequency bands from the mobile telephony spectrum: 925 MHz -
960MHz, 1805MHz - 1880MHz, 2110MHz− 2170 MHz .

The monitoring equipment has low energy consumption, but to be operational
24/7 it can be powered by a solar panel or batteries, thus its energy autonomy can
be extended up to 80 days. Additionally, it includes internal memory for storing
collected information, which can be expanded. Recorded data is transmitted to
the server/PC via an integrated modem. An internal GPS module allows for its
localization.

The recorded values of the electric field intensity (RMS) are either peak values
or maximum values recorded in the monitored frequency bands, or temporally
averaged values over 6 minutes.

ERMS =

√√√√ 1

n

n∑
i=1

(Ei)
2 (1)

where n represents the total number of discrete values, and Ei represents the
discrete values of the electric field intensity.

On the building of the Politehnica University of Timis,oara (UPT), such a
monitoring station is installed.

On the roof of the building, numerous mobile base stations are installed, but an
important contribution also comes from the base stations and antennas located on
the building of the West University of Timis,oara (UVT), situated in the vicinity
of the UPT building. Additionally,
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Fig. 1: Screenshot of the map showing the sensor location [7]

Fig. 2: Placement of the sensor on the UPT building[7] being a university area,
the traffic on the mobile networks is high, so it is expected that the data recorded
by the monitoring station would be higher compared to other less populated areas
with lower antenna.

The data obtained from the sensor was checked to ensure there were no missing
or outlier values. Additionally, we removed zero values recorded as average values
that had corresponding non-zero peak values, and vice versa.

The values used in the study are daily average values of the data recorded by
the sensor, in the wide band ( 100kHz − 7GHz ) and for the three frequencies:
2140 MHz, 1842MHz, and 942 MHz , during the period from September 2022 to
September 2023, as shown in Figure 3.

Fig. 3: Average values of the electric field intensity over a period of one year

In this graph, on the vertical axis, we represent the electric field intensity, mea-
sured in V/m, with values ranging approximately between 0.4 V/m and 2 V/m.
On the horizontal axis, we represent the days of the year, from 0 to 400 . Each
band/frequency is represented by a different color. The highest average values
of the electric field, values approaching 2 V/m, are in the wide band. Moderate
values, between 1.2 and 0.75 V/m, are at the frequency of 1842 MHz , while the
other two have values below 1 V/m. This graph provides a perspective on how
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the electric field intensity varies over the course of a year, for different frequencies.

3 Model and experimental validation

We used the simplified Holt-Winters method (simple exponential smoothing model),
without trend and without seasonality, to adjust the level of the time series. The
method uses the weighted sum of present and past terms, giving higher weights
to present series terms and lower weights to past terms. Thus, by applying this
method to the daily averaged values for the four frequency domains, we obtained
predictions for the next value of the electric field.

Fig. 4: Holt-Winters method E[V/m] in the 100kHz− 7
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Fig. 5: Holt-Winters method E[V/m] at the frequency of 2140 MHz GHz
band

Fig. 6: Holt-Winters method E[V/m] at the frequency of 1842 MHz
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Fig. 7: Holt-Winters method E[V/m] at the frequency of 942 MHz
Another method we used in the time series analysis is ARIMA (p,d,q) (Au-

toRegressive Integrated Moving Average), composed of p - the number of autore-
gressive terms, d - the number of differencing needed to make the series stationary,
and q - the number of moving average terms. We obtained the optimal parameters
for ARIMA considering the AIC (Akaike Information Criterion) to identify the
model that best balances complexity and data fitting.

Fig. 8: The ARIMA (3, 2, 0) method E[V/m] in the 100kHz− 7GHz band
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Thus, for the data in the 100kHz−7GHz band, we obtained the ARIMA(3,2,0)
model; for the 2140 MHz frequency, we obtained ARIMA(1, 2, 0); for the 1842
MHz frequency, we obtained ARIMA(2,1,2); for the 942 MHz

Fig. 9: The ARIMA (1, 2, 0) method E[V/m] at the frequency of 2140 MHz

Fig. 10: The ARIMA (2, 1, 2) method E[V/m] at the frequency of 1842 MHz
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Fig. 11: The ARIMA( 1, 2, 0) method E[V/m] at the frequency of 942 MHz
The values predicted by the two methods were compared with the last value in
the series, kept for verification of the predictions, and we highlighted them in the
graph 12 .

Fig. 12: Predicted values vs. actual value, for the average values of the electric
field
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A better prediction is observed using the exponential smoothing method. The
smallest fluctuation in deviation from the actual value is achieved by the Holt-
Winters method.

Following the use of the two methods, we calculated the deviations from the
actual value for each frequency domain using the formula:

Deviation = Predicted value - Actual value
TABLE I: Prediction deviations

Frequency
deviation from the actual value
Holt-Winters ARIMA

100kHz− 7GHz 0,009 −0, 068

2140 MHz 0,013 0,217

1842 MHz 0,018 0,871

942 MHz 0,013 −0, 298

In conclusion, the graph shows that both prediction methods can be useful,
but the Holt-Winters method tends to be more accurate in this dataset. The
ARIMA model has mixed performance and may require additional adjustments
to improve prediction accuracy in some cases.

To track how the level of the electric field in the wide band has evolved, we
analyzed the months of September 2022 and September 2023.

Fig. 13: The average values, per one-hour intervals, of the electric field inten-
sity in the 100kHz− 7GHz band in September 2022
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I averaged the electric field values over hourly intervals for the two months.

Fig. 14: The average values, per one-hour intervals, of the electric field inten-
sity in the 100kHz-7GHz band in September 2022

We observe high values in the hourly interval 00−01, which gradually decrease
until around 05-06. This is followed by an approximately 25% increase until
around noon, when the values remain relatively constant until 19. After this
time, the values tend to increase until a peak around 23, then decrease slightly
until 24 .

Fig. 15: The average values, per one-hour intervals, of the electric field inten-
sity in the 100kHz-7GHz band in September 2023
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For the month of September 2023, the same diurnalnocturnal pattern is ob-
served, with lower values at night and higher values during the day and evening.
The absolute difference between the maximum value, recorded in the 21-22 PM
time interval, and the minimum value, recorded in the 5-6 AM time interval, is
0.717 [V/m] higher, and the percentage difference shows that the value 2.044 is
approximately 54.03% higher than 1.327 .

By comparing the obtained average electric field values with the reference
levels according to OMS 1193/2006, we obtained the graph below.

Fig. 16: Evaluation of the electric field and comparison with reference levels
according to OMS 1193/2006

4 Conclusions

I conducted a statistical analysis of a database containing records related to the
electric field level E[V/m] (RMS values temporally averaged). The recordings
were collected by the sensor installed on the UPT building. Values of the electric
field were collected in a broad frequency range ( 100kHz − 7GHz ) and on three
specific frequencies ( 2140MHz, 1842MHz, 942MHz ), primarily used by mobile
phone operators.

From the graph showing the average electric field intensity values over a one-
year period, I observed a decrease in the electric field level received at the fre-
quency of 2140 MHz at the beginning of January 2023, which coincided with an in-
crease in the level received at the frequency of 942 MHz . These increases/decreases
in levels can be explained by reconfigurations resulting from the upgrading of base
stations.
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I performed a time series analysis using the HoltWinters and ARIMA methods
to obtain a prediction of the last value in the dataset, which was then compared
with the actual measured value. Using both methods, I obtained deviations rang-
ing between 1%− 1.2% for the Holt-Winters method and between 0.59%− 1.37%
for the ARIMA method. Both prediction methods can be useful, but the Holt-
Winters method tends to be more accurate for this dataset. The ARIMA method
has mixed performance here and may require further adjustments to improve
prediction accuracy.

I calculated the hourly averages of the electric field, in the 100kHz − 7GHz
band, for each hour of the day aggregated for the entire month (considering
September 2022 and September 2023) to monitor the evolution of the field level. I
found that there is a diurnal-nocturnal pattern, with lower values during the night,
towards the morning, and higher values throughout the day and late evening.
These differences reach up to approximately 54% higher late at night compared
to the lowest values in the early morning.

At the end of the analysis, I compared the average electric field values from the
period of September 2022 to September 2023 with the reference level according
to WHO 1193/2006 and concluded that there are no exceedances. Moreover, the
measured values represent 1 6% of the maximum level provided in the legislation.
The obtained graph clearly illustrates the significant difference between the actual
values and the legislative limits, emphasizing compliance with safety regulations.
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A COMPARISON OF AMBIENT
RADIOFREQUENCY ELECTROMAGNETIC
FIELD (RF-EMF) LEVELS IN DIFFERENT

OUTDOOR AREAS IN ROMANIA

Ioan Dorel TODOR

Abstract

The recent development of wireless communications in Romania has
caused concerns among the population regarding how it can affect health.
ANCOM has implemented a nationwide monitoring network of electromag-
netic emissions with sensors located in over 100 localities that collect data
on the ambient level of the electric field. Until now, there has not been an
evaluation of this information at the national level and the present work pur-
sues three objectives using data collected over a period of 12 months, from a
sample of 44 localities from all historical regions.

The first objective is to establish a average values of the electric field level
over a wide area in Romania and comparing it with the reference level in the
public health legislation.

The second objective is to make some comparisons between the annual
averages of the electric field level in four groups of 11 localities established
on the population density criterion.

The third objective is the verification of a supposed increase in the electric
field level with the implementation of 5G technology.

Using statistical evaluation methods, the results obtained show an aver-
age level of exposure for the 44 localities of 5.78 % of the maximum exposure
limit established by OMS1163/2006, the statistical hypothesis regarding the
homogeneity of the average values of the electric field for the four groups of
localities cannot be rejected either. Multivariate analysis of broadband elec-
tric field level composition data cannot demonstrate a greater contribution
of the level generated by the deployment of 5G technology. .

1 Introduction

The new wireless communication technologies have experienced an accelerated
development in Romania as well as in the rest of the economically developed

17
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countries, with a negative consequence and an increase in the level of electromag-
netic pollution coming mainly from the base stations of mobile communication
operators. In response to the population’s concerns regarding how the limits
imposed by the national legislation on exposure to electromagnetic fields are re-
spected, ANCOM has implemented a network of sensors that measure these levels
in real time and make them available to those interested on a public portal (emf-
monitor .ro).A fear among an important part of the population has particularly
induced the widespread use of mobile communications in more and more regions.
Thus, a survey carried out in 2006 at the level of the European Union shows that
over 60 % of the respondents believe that wireless communication systems would
affect health to some extent [1] and through numerous recent studies an attempt
has been made to clarify some aspects regarding these fears.

In Europe and beyond, studies were conducted that aimed to verify some hy-
potheses on how the noxiousness generated by new technologies have a negative
influence on health. Thus, a 2014 study done following the International Agency
for Research on Cancer’s declaration of radiofrequency electromagnetic fields as
possible causes of cancer [2], by researchers Michael Carlberg and Lennart Hard-
ell, highlighted a direct relationship between the increased level of electromagnetic
noxes and the survival rate of patients with Astrocytoma Grade IV [3]. A study
carried out in Saudi Arabia verified the existence of a positive correlation between
exposure to RF-EMF (Radiofrequency-Elecromagnetic Fields) and increased lev-
els of glycated hemoglobin (HbA1c) in 250 volunteer subjects who were students
at a university in Riyadh. The results of the study indicated an increased risk of
diabetes in students who were exposed to electromagnetic noise compared to the
control group [4].

Other studies have checked the possible changes over time in the levels of
exposure of the population due to the technological changes in the field of wireless
communications such as the one in Switzerland [5] which followed the evolution
of the RF-EMF level compared between the years 2017 and 2021. The study was
done in different areas representative for population density (Rural, suburban and
urban) and in different micro environmental environments including in different
means of public transport. The results obtained from the evaluation by statistical
means of the data obtained from the measurements showed insignificant changes
between the two years in terms of RF-EMF values.

Closer to us, a study from Serbia aimed to verify EMF levels near mobile
communication stations and the results showed that on the one hand the general
level of noise contains all the components generated by mobile communication
stations, and on the other hand that the maximum of the electromagnetic field
level measured is below the reference limit of the legislation in Serbia although
the distance between the emission antenna and the measurement point was 60 m
[6].

A 2020 study by researchers from the Gheorghe Asachi University in Ias, i, in
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collaboration with ANCOM, formulated conclusions regarding the level of expo-
sure to EMF at the level of the municipality of Ias, i [7] The data were taken from
the 4 ANCOM sensors installed in populated areas from the city for the whole
year 2020 and the average and maximum values were used for comparison with
reference levels in Romaninan national legislation (OMS 1193/2006)

According to the data published by ANCOM in a synthesis of the electronic
communications market from the first half of 2023 in Romania, a growth rate
is maintained in the internet segment and data that express the trend of digital
transformation of the data transmitted through these systems. From the same
synthesis, a 4 % increase in mobile internet traffic is observed, most of it being
done on 4G networks (94 %) but also a doubling of traffic on 5G networks [8].
Thus the legitimate question arises whether this increase is reflected in an increase
in the level of electromagnetic pollution over a wide area and a scientifically based
answer is desired to be made in the present work.

2 Materials and methodes

2.1 Equipment used for measurements

To measure the electric field level, specialized sensors for electric field level mea-
surements like the one in Figure 1 were used. The Narda AMB module is con-

Figure 1: Narda AMB 8059/03 module and EB-4B-02 probe
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nected to a specialized isotropic triaxial antenna for broadband measurement
(100KHz-7GHz) which, together with the sensor’s active filters, also allows mea-
surement on three distinct bands (942MHz, 1842MHz and 2140MHz) used by
mobile communications operators in Romania. With few exceptions, it can be
said that most applications using wireless technology are covered, such as mobile
communication networks, AM and UUS radio transmitters, DVB-T2 transmitters,
Wi-Fi networks, mobile or fixed transmitters for point-to-point communications.
ANCOM sensors are equipped with autonomous energy supply systems (solar
panel) and GSM modem used to transmit data once a day to the server. I men-
tion that I removed the data recorded during the transmission period from the
database used in order not to influence the calculated average value. More details
about the equipment used can be found in Table 1

Table 1: AMB 8059 Tehnical specification
AMB-8059 Multi-band EMF Area Monitor Tehnical specification

Measurements units Wm, kV/m, nT, VT, mT, %

Field measured Total field, average and Peak (MAX)

Sampling 1 measurement every 1 s

Memorization interval Programmable from 30 sec to 15 min

Memory Over 128 MB

Max data storage capacity Over 364d with 1 acquisition/min

Field strength alarm Two programmable field strength thresholds

Clock Real time internal clock

Sensor Display of model and calibration date

Battery management Every record includes Battery Voltage and Charge Current value

Temperature management Every record includes Internal Temperature value

Humidity management Every record includes Internal Humidity value

GPS coordinates Programmable record

2.2 Location and measurement conditions ( measured frequency
bands

Location of the the sensors was done in compliance with the ITU-T K.83 recom-
mendation regarding the monitoring of electromagnetic field levels. Sensors are
usually placed on building roofs or higher locations to have an unobstructed line
of sight to electromagnetic field sources, in more densely populated areas such
as public buildings, university campuses, public squares, hospitals, transport sta-
tions. The measured values can be negatively influenced by the existence in the
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immediate vicinity of the sensors of some metal structures or even by the own mo-
dem at the time when the data is transmitted to the server, so these aspects were
taken into account at the time of data processing. An example of the location of
a sensor is the one shown in Fig.2

Figure 2: Senzor EMF in Timisoara

Taking into account that from the point of view of the share of electromagnetic
field sources in the exposure level of the population, the mobile communication
systems are in the first place, also the ANCOM’s sensor network was designed to
monitor these systems.

The frequency bands allocated in Romania for this type of communications
were auctioned and allocated to the five main operators as can be seen in Fig. 3

Figure 3: Mobile comunication frequency spectre used in România

Outside of these bands, radio transmitters transmitting in the medium-wave
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(UM) and ultra-short-wave (UUS) bands and television transmitters transmit-
ting in the ultra-high frequency (UHF) band have a smaller share. The values
measured and recorded by the ANCOM sensors represent the total value of the
electric field level measured on the three propagation planes with the formula:

ETRMS =
√

E2
XRMS + E2

Y RMS + E2
ZRMS (1)

and each of the three components are calculated in turn with the formula:

ERMS =

√
1

T

∫ T

0
E(t)2, dt (2)

where E(t) is the electric field as a function of time, and T is the time period over
which the integration is done.

In the context of exposure to electromagnetic radiation, RMS values of the
electric field are worldwide used to assess exposure levels and ensure compliance
with safety standards.

2.3 The locations of the sensors

In Romania, the EMF monitoring network includes a number of more than 70
localities where more than 140 sensors are located and used for monitor 24/7
the level of the electric field and the data collected by them is available on the
monitor-emf.ro [9] platform. An interactive map with the location of the sensors
on the national territory is presented in Figure 4

Figure 4: The locations of ANCOM sensors from Romanian cityes
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On the web page accessible for free when accessing a location, the electric field
values of the last 3 days are displayed in a window in the form of a graph as seen
in the screenshot shown in Figure 5

Figure 5: Prezentarea informat, iilor unui senzor din ret,eaua EMF prin accesarea
hărt, ii interactive

For this study, we obtained with courtesy of ANCOM the electric field level
value data from 44 localities, mainly county seats or municipalities in all historical
provinces to have an overview of the RF-EMF level at the national scale. From
the initial volume of data, we extracted average and peak electric field level values
in broadband (100KHz-7GHz) and on the three bands assigned to mobile com-
munications (925-960MHz, 1805-1880MHz, 2110-2170MHz). In addition to these
data, we also retrieved information regarding the moments when the recording
was made (timestamp) and the ambient temperature values from those moments.
The data were initially processed in excel where we did a filtering of non-compliant
values (values recorded at the time when the sensors were transmitting data to
the server, or exaggerated values also possibly caused by recording/transmission
errors).

In order to verify a supposed connection between the electric field values mea-
sured in the localities and the population density, we added data on the number
of permanent residents in the respective localities with data taken from the roma-
nian population census carried out in 2021 [10]. The 44 localities we then grouped
in 4 categories of 11, each based on the population density criterion as can be seen
in Table 2



24 I.D. Todor

Table 2: Grouping of localities according to the number of residents

EMF monitored localities table

Cityes group names Number of permanent residents

Municipii 1 10000-35000

Municipii 2 35100-72000

Res,edint,e 1 73000-183000

Res,edint,e 2 200000-1717000a

aBucharest included

3 Statistical data processing and results

3.1 RF-EMF values measured at national level

The first data processing consisted in calculating the means of annual values for
the CE level measured in broadband to visualize a possible correlation between
it and the population density, a bar graph with the recorded values is shown in
Figure 6.

Figure 6: Recorded means CE values in 44 localities; Municipii 1 -Red, Municipii
2 - Green, Res,edint,e 1 - Blue, Res,edint,e 2 - Violet)

The values related to each locality represent the average annual value of the
electric field and as can be seen they fell within the range of 0.20 - 8.05 [V/m].
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The average annual EC value for the 44 localities was 1.53 [V/m] which represents
a percentage of 5.56 % of the maximum exposure limit imposed by legislation [11].

In order to better observe the distribution of values in each group of localities,
as well as the median values, quartiles and outliers, we created a boxplot type
graph presented in Figure 7.

Figure 7: Boxplot of CE levels by locality groups

3.2 Hypothesis testing

In the statistical analysis by groups of localities, we started from the hypothesis
of the existence of a significant difference between the means and variances for
the 4 categories of localities, these data being included in the Table 3.

To test the statistical hypotheses, I decided to use the paired T-test on two
groups of localities to verify the null hypothesis ”There are no significant differ-
ences between the means of the two groups”. I used the specialized R program
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Table 3: Means and Variance by locality groups

Mun 1 Mun 2 Res 1 Res2

AVG 1,06 1,12 1,83 2,34

VAR 0,06 0,28 0,27 0,41

for statistical studies, available in the free edition, and after running the test with
the data presented above, I obtained the values from Table 4

Table 4: Results of paired T-tests for groups of localities

Tested groups test T df p -Val

Mun1 vs Mun2 -0,15 14,93 0,88

Mun1 vs Res1 -1,13 11,63 0.28

Mun1 vs Res2 -2.13 12,15 0,05

Mun2 vs Res1 -0,94 15,69 0.36

Mun2 vs Res2 -1,80 17,07 0.09

Res1 vs Res2 -0,59 19,61 0.56

It can be seen that the p-values of the 6 tests are greater than the 0.05 level
of significance and the p-value of 0.8832 from the first test suggests that there
is an approximately 88.32 % probability that the observed difference is due to
chance, in other words we can say we don’t have enough evidence to reject the
null hypothesis.

Another variant of statistical testing of the data from the 4 groups was by
using the multiple paired T-test. After running this test using the Benjamini and
Hochberg method, we obtained the results from Table 5.

Table 5: Multiple paired T-test results

- Mun1 Mun2 Res1

Mun2 0,93 - -

Res1 0,46 0,46 -

Res2 0,24 0,24 0,55
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Table 5 contains only the p-values calculated for a significance level of 0.05
which apparently differ from the p-values calculated with the simple paired T-test
but lead us to the same conclusion that we do not have enough evidence to reject
the null hypothesis.

To deepen the statistical research, we also ran on the same data set one-
way ANOVA tests as an alternative to the multiple paired T-test, Bartlett test
to check the homogeneity of variances, the Shapiro-Wilk test to check the data
distribution and a non-parametric test, the Kruskal-Wallis test to improve the
result the ANOVA test.

The results of running these tests in R are shown in Tables 6, 7, 8 and 9.

Table 6: Rezults of ANOVA unidirect, ional test means 4 groups

- SumSq MeanSq Fvalue Pr(¿F)

Variab 12,28 4,09 1,61 0,20

Resid 101,5 2,53 - -

Table 7: Rezults of Bartlett test of variances for 4 groups

Bartlett test of homogenity of variances

Date : Mun1, Mun2, Res1, Res2

K-squared=14.004 df=3 p-value =0.0029

Table 8: Rezults of Shapiro-Wilk normality test

Shapiro-Wilk normality test

Date : Reziduale test ANOVA

W = 0.73848 p-value = 1.701e-07

Table 9: Rezults of Kruskal-Wallis rank sum test

Kruskal-Wallis rank sum test

Date : groups means Mun1, Mun2, Res1, Res2

K-W chi-sq = 6.98 df = 3 p-value = 0.073
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For the ANOVA test, as in the case of the T-tests, and in this case the null
hypothesis states that there are no statistically significant differences between the
means of the four groups of localities. A p-value of 0.202 obtained in this test
convinces us that we cannot reject this hypothesis. To validate this model we used
the graphical method using the Residuals vs Fitted and Q-Q graphs and when
analyzing them we observed an inhomogeneity of the variance which led to the
conclusion that the ANOVA test is not the most suitable for analyzing the data
underlying this study.

By running the Bartlett test we obtained a result (p-value 0.0029) that con-
firms the inhomogeneity of the variance.

Next we checked the data for distribution using the Shapiro-Wilk test to check
whether it follows a normal distribution or not. The result of this test confirmed
beyond any doubt that the data does not follow a normal distribution (the p-value
of the test was 5 orders of magnitude lower than the classical significance level)

The complementary, non-parametric test recommended to be used in cases
where ANOVA is not suitable is the Kruskal-Wallis test, which verifies the homo-
geneity of the medians. After running this test, the obtained p-value confirms the
fit of the null hypothesis of homogeneity of the medians.

3.3 Multivariate analysis

Another statistical approach to the data I made using multivariate analysis, trying
to make an inference on the average value of CE according to 6 variables of 44
observations related to localities. We considered the response variable to be the
average annual value of the electric field measured in broadband, and as predictor
variables we used the average annual temperature, the number of inhabitants,
the average annual value of the peak values of the electric field also measured in
broadband as well as the values annual averages of the electric field measured in
the three bands used in mobile communications. I also performed the analysis
with the R program, the first step being the calculation of the correlation matrix
between the variables and the displayed result is shown in Figure 8.

Although the data structure used in the paper is not complex, we also con-
sidered useful a principal components analysis (PCA) to verify the possibility of
simplifying the analysis and even the possibility of visualizing the data in two or
three dimensions. After running the PCA analysis in R we obtained the data on
the proportion of variability of each principal component in the general regression
model.

Thus, as can be seen in Figure 9, the first 4 components explain a proportion
of 95 % of the variation of the regression model. Also, to verify the structure of
each main component, we ran the PCA analysis in R and obtained the structure
for Component 1 that explains the most variability of the regression model.

On the graph in Figure 10, you can see the weights of the predictor variables
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Figure 8: Spearman‘s corelation matrix

Figure 9: Proportion of Variance
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within it.

Figure 10: Component 1 structure of variables

The final step of the PCA analysis was to determine a multiple linear relation-
ship between the principal components and the response variable AVRWM. The
lm (linear model) function in R is used to fit linear regression models, and when
applied to principal components, the goal is to use these components (which are
linear combinations of the variables originals) as predictors in a regression model.

The result obtained after running this analysis in R confirmed the futility of
using component 6 in building the model, the p-value of the T test related to
it being higher than the level of significance, for which we removed it from the
model and the result obtained was that of Table 10

Through the prism of comparing the p-values, a fit of the model is clearly
observed, a confirmed situation and both the value close to the maximum for the
adjusted R-squared coefficient and the p-value of the F-test.

4 Discussions

It can be seen on the graph in the figure 7 the average value of the electric field
is slightly higher for the category of localities with a larger number of inhabitants
(Residence Jud 2) and for the other groups the average values are quite close.
There are two possible explanations for this situation, both of which are based on
the characteristics of the sources that generate the electromagnetic field.

The first explanation is related to the fact that an increased population density
is positively correlated with an increased number of mobile communications and
this can only be achieved through a higher density of mobile phone base stations.



Discussions 31

Table 10: Linear PCA model optimized for 5 components
Residuals:

Min 1Q Median 3Q Max

-0.41706 -0.04321 0.00881 0.06202 0.51178

Coefficients:

- Estimate Std. Err t value Pr(¿—t—)

(Intercept) 1.63179 0.02166 75.351 ¡ 2e-16

Comp.1 0.71881 0.01147 62.683 ¡ 2e-16

Comp.2 0.41357 0.02022 20.451 ¡ 2e-16

Comp.3 0.34592 0.02514 13.762 2.4e-16

Comp.4 -1.20084 0.04234 -28.362 ¡ 2e-16

Comp.5 -0.16913 0.04865 -3.476 0.0013

Residual standard error: 0.1436 on 38 degrees of freedom

Multiple R-squared: 0.993–Adjusted R-squared: 0.992

F-statistic: 1071 on 5 and 38 DF, p-value: ¡ 2.2e-16

An increase in the number of mobile stations, on the other hand, automatically
leads to an increase in electromagnetic noise within the radius of the respective
localities. From the analysis of the localities, most of those with a higher level
of the electric field have a high population density and are university centers
(Bucharest, Ias, i, Bras,ov, Sibiu, Constant,a, Timis,oara).

The second explanation for a higher measured electric field level is related to
the existence in or near the towns of high power radio/TV transmitters, which
generate higher electric field levels. These transmitters were initially installed
(‘50-‘70 years) outside the towns, but with the expansion of the residential areas
they were included inside them and therefore the respective areas have a higher
level of electromagnetic pollution (Timis,oara, Sibiu, Bucharest, Ias, i)

The inconclusive results of the paired T and ANOVA tests were due to the
fact that the distribution of the data was not suitable for the use of the first two.
Finally, the verification of the normality of the data distribution with the S-W
test and then of the homogeneity of the medians with the K-W test supported
the hypothesis regarding the homogeneity of the average values of the electric field
level in the case of the four groups of localities.

We considered useful the multivariate analysis using as response variable the
average value of the electric field measured in broadband because it best reflects
the level of exposure of the population to electromagnetic noxes, being taken as
a reference in the case of the analysis of the level of exposure in accordance with
the legislation in the field .

From the perspective of this analysis, the results of the calculation of the
correlation matrix 8 lead us to the conclusion of the existence of a strong link
between the response variable AVRWM and the predictor variable AVRWP
and weaker links between the variables AVR942M, AVR1842M, AVR2140M
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and AVRWM.

The situation can be explained by the fact that in the composition of the
average value of the broadband electric field, the electric field values from the three
bands allocated to mobile communications also have a significant weight. The
correlation values between the predictor variables related to the electric field values
can be explained by the fact that the emission levels of mobile communication
base stations are relatively similar. We also observe a weak negative correlation
between the variable temperature and the variables of the electric field values,
explained by the fact that the propagation of electromagnetic waves is favored by
low temperatures.

From Table 9 we can conclude that the first four components explain 95 % of
the variability of the model and therefore they are sufficient for further analysis.
Component 1 has the largest weight in explaining the variability of the linear
model and within it, following the PCA analysis, we noticed that the variables
containing average values of the peak electric field and on frequency bands have
a similar but higher weight than the average temperature values or population
density which comes as a confirmation of the interpretation of the correlation
matrix results.

Although from the point of view of the results obtained after running the
PC analysis in R, the model with 6 principal components is similar to the one
with 5 components in practice simpler models are preferred for possible graphical
processing or for the simplicity of the analysis. The efficiency of the PCA analysis
can best be seen by comparing it with the model obtained from the linear analysis
with the predictor variables in this latter case only two variables passed the T-
test and could enter the model, a situation in which the model does not show
confidence.

5 Summary and conclusions

Data were collected on the levels of exposure of the population to the electro-
magnetic field in the period September 2022-September 2023 from 44 localities in
Romania spread over the entire national geographical area. Annual average val-
ues of the electric field level measured in broadband (100KHz-7GHz) and in three
bands used by mobile communication operators (925-960MHz, 1805-1880MHz,
2110-2170MHz) were processed in order to use them for various analyzes statis-
tics.

For the first part of the study, the data were divided into four groups selected
on the basis of population density, and statistical tests were performed to verify
the hypothesis that there are no statistically significant differences between the
four means. The paired T, multiple paired T, ANOVA, Bartlett, Shapiro-Wilk,
Kruskal-Wallis tests were run in R and their results confirm the homogeneity of
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means, medians and the fact that the data do not have a normal distribution.
In the second part of the study, we did a multivariate analysis with 5 predictor

variables containing observations from all 44 localities to obtain a model of vari-
ability of the average electric field level in broadband. Following the PCA analysis,
we obtained a model that explains 99 % of this variability for the respective cities,
the prediction error being very small.

From the point of view of the levels of exposure to electromagnetic pollution of
the population at national level, the average value for the 44 localities represents a
percentage of 5.78 % of the maximum limit allowed in the legislation (27.5 V/m),
the minimum values and maximum exposure being recorded in Tulcea (0.73 %)
respectively in Sibiu (29.27 %).

At the present moment, the implementation of 5G technology in Romania is
in its early stages, being available only in large towns, the frequencies proposed
for use being available on the ANCOM [12] page, but even so it can be stated
based on the analysis in this study that no has a significant impact on the share
of electromagnetic pollution in the respective localities, so the fears induced to
the population through the mass media are unjustified.

As wireless technology develops by leaps and bounds, it is necessary to develop
the electromagnetic nox monitoring systems and to continue studies in this field in
the future in order to provide safety among the population regarding the correct
use of new technologies without affecting the state of health .
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de date statistice -semestrul i 2023. https://statistica. ancom.ro/sscpds/public/
files/272-ro, 2023. Accesat: 202405-1.
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Abstract

This article explores the application of correlation and regression statis-
tical methods in cardiac pathology. The aim of this study is to identify and
analyze the relationships between various cardiac parameters to improve the
understanding and management of heart diseases.

The research utilizes a comprehensive dataset, including variables such as
ejection fraction, age, QRS duration, end-diastolic volume, end-systolic vol-
ume, interventricular septum thickness, left ventricular end-diastolic diame-
ter, systolic pulmonary artery pressure, and left atrial volume. The analysis
focuses on descriptive statistics, correlation matrices, and regression models
to highlight significant associations among these parameters.

Key findings reveal strong negative correlations between ejection fraction
and both end-diastolic and end-systolic volumes, indicating that higher ejec-
tion fractions are associated with smaller volumes. Additionally, the study
identifies moderate positive correlations between QRS duration and both in-
terventricular septum thickness and left ventricular end-diastolic diameter.
These relationships emphasize the interdependence between the heart’s elec-
trical and structural characteristics.

The research also employs graphical visualizations to facilitate the in-
terpretation and communication of results, thereby contributing to a better
understanding of the complexity of cardiac pathology and improving diag-
nostic and therapeutic approaches in this field.

Keywords and phrases:cardiac pathology, statistical correlation, regres-
sion, ejection fraction

1 Introduction

Cardiac pathology is a leading cause of morbidity and mortality globally, affecting
millions and significantly impacting quality of life. Understanding the mechanisms
and factors behind heart disease progression is crucial.

35
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This study aims to explore the relationships between various cardiac parame-
ters using correlation and regression statistical methods. By analyzing variables
such as ejection fraction, QRS duration, and ventricular volumes, we seek to iden-
tify significant associations that can aid in the diagnosis and treatment of heart
diseases.

The article first reviews the anatomy and physiology of the heart, congenital
conditions, ischemic diseases, arrhythmias, and heart failure. It also covers diag-
nostic methods, evaluation strategies, and treatment and prevention options. The
second part details the statistical methods used, including descriptive analysis and
correlation and regression models.

Our goal is to provide insights into the interdependencies between cardiac
parameters, enhancing clinical approaches and outcomes for patients. Rigorous
statistical analysis highlights significant variable relationships, supporting clinical
decisions and personalized therapeutic strategies.

2 Methods

2.1 Descriptive Statistical Methods Applied to the Dataset

We employed descriptive statistical methods to analyze the dataset, providing a
clear overview of data distribution and characteristics.

Data Collection: Dr. Cristina Văcărescu collected data from 54 patients at the
Institute of Cardiovascular Diseases in Timis,oara. The patients were studied over
several years to examine heart failure reduction through cardiac resynchronization
therapy.

Data Analysis: The R software system was used for statistical analysis. The
following methods were applied:

- Central Tendency Indicators: Mean, median, and mode were calculated to
describe central tendencies.

- Dispersion Indicators: Standard deviation, quartiles, and deciles were mea-
sured to assess data spread. Correlation Analysis:

Pearson Correlation Coefficient: Used to measure the linear relationship be-
tween pairs of variables. The correlation matrix was computed to identify signif-
icant associations.

Regression Analysis:

Linear Regression: Applied to investigate the relationships between dependent
and independent variables. The model included predictors such as QRS duration,
end-diastolic volume, and end-systolic volume.

Multinomial Regression: Utilized to analyze risk factors associated with hy-
pertension (HTN) considering variables such as sex, age, chronic kidney disease
(CKD), and cardiomyopathy etiology.
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2.2 Software Tools

The analysis was performed using the R statistical software. Specific packages
used include: dplyr for data manipulation, ggplot2 for creating detailed and cus-
tomizable data visualizations, readxl for reading Excel files.

Each step of the analysis was thoroughly documented, and graphical visualiza-
tions were generated to facilitate the interpretation of the results. The following
sections will present these results along with the corresponding visualizations.

3 Results and Discussions

3.1 Central Tendency Indicators

The first step, presented in Figure 1, involved calculating the mean age of the
patients using the mean function. The result was an average age of 62.34 years,
displayed using the print function, indicating the average age value for the entire
dataset.

Figure 1: Calculating the mean age of the patients using the mean function

The next step, presented in Figure 1, was calculating the median age of the
patients using the median function. The result was a median of 62 years, indi-
cating the central value of the dataset when the values are arranged in ascending
order. Next, Figure 2 illustrates the calculation of the mode of the patients’ ages

Figure 2: Calculation of the patients’ median age using the median function in
the R system.

using the Mode function. The result indicated that the most frequent age among
the patients is 58 years, appearing 5 times in the dataset, thus highlighting the
most commonly encountered age within the dataset.
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3.2 Dispersion Indicators for Numerical Variables

Standard deviation is a measure of data dispersion around the mean. For the age
of patients, the standard deviation is approximately 10.89, which means that the
age values are spread around the mean by this amount. The calculation of the
standard deviation is presented in Figure 3.

Figure 3: Calculation of the standard deviation for the patients’ age in the R
system

3.3 Dispersion Indicators for Ordinal Variables

Quartiles divide the data distribution into four equal parts, as shown in Figure 4.
The first quartile (Q1) is 58, the median (Q2) is 62, and the third quartile (Q3)
is 68.75. These values indicate the lower and upper bounds of the first 25%, 50%
and 75% of the dataset, respectively. Deciles divide the data distribution into ten

Figure 4: Calculation of quartiles in the R system.

equal parts, as shown in Figure 5. These values mark the percentiles from 10%
to 90%. For example, 10% of the patients have an age less than or equal to 51.8,
20% have an age less than or equal to 56.6, and so on.

Figure 5: Calculation of deciles in the R system.

3.4 Indicators for Qualitative Variables

We began by defining the variable ”NYHA”, which contains the categories for
which we wanted to calculate proportions and represent them in a chart.

We calculated the proportions of each category in the ”NYHA” variable using
the table function (Figure 5), which counts the occurrences of each category in
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the dataset. We then divided this count by the total length of the vector to obtain
the proportion.

For representing the data in a chart, we used the pie function. We included
the main argument to add a title to the chart and col to specify colors for each
category. We added the legend to the upper right side of the chart to indicate the
correspondence between the colors and the categories in the variable using the
legend function.

Figure 6: Calculation of the Proportions for Each Category in the ”NYHA”
Variable Using the table Function.

Therefore, we successfully created a chart that visually represents the propor-
tions of each category in the ”NYHA” variable in a clear and efficient manner.

Figure 7: The proportion of NYHA values

From the chart, we observe that the majority of patients fall into the NYHA
III category, represented by a large sector of the chart. This suggests that most
patients in the dataset have moderate to severe heart failure symptoms according
to the NYHA classification.

On the other hand, we see that there is only one patient in the NYHA I
category, represented by a very small sector of the chart. This indicates that the
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number of patients with mild heart failure symptoms is much smaller compared
to those with moderate or severe symptoms.

Next, we chose to represent the distribution of mitral regurgitation grades of
the patients recorded in the dataset through another chart. We began by defining
the variable ”RM” (Figure 8), which contains the mitral regurgitation grades
for each patient in the dataset. Then, we used the table function to count the
occurrences of each mitral regurgitation grade in the dataset. Subsequently, we
used the barplot function to represent the frequency distribution as a bar chart.
We specified the arguments main, xlab, and ylab to add a title and labels on the
x and y axes, and the col argument to specify the color of the bars.

Figure 8: Calculating to find the distribution of Mitral Regurgitation grades in
the R system

Figure 9: Distribution of Mitral Regurgitation

The chart presented in Figure 9 indicates that the majority of patients fall into
grade 2 of mitral regurgitation, followed by grade 3, while the smallest number of
patients are in grade 1.

We continued by creating a graph in R for tricuspid regurgitation (Figure
10). We entered the observed values for tricuspid regurgitation into a vector and
calculated the occurrences of each category using the table function. Subsequently,
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we created the graph using the barplot function, specifying the title, labels for
the x and y axes, and the color of the bars.

Figure 10: Calculation for determining the distribution of tricuspid regurgitation
grades in the R system.

Figure 11: Distribution of Tricuspid Regurgitation in the R system.

From the analysis of the chart presented in Figure 11, it can be observed that
the majority of patients fall into grade 2 of tricuspid regurgitation, suggesting that
this severity grade is the most common in the dataset. Following this, patients in
grade 1 are the next most frequent, with a smaller proportion of patients falling
into grade 3. This distribution suggests that tricuspid regurgitation is more often
encountered at a moderate severity level than at severe or very severe levels.

3.5

Distribution of Patients with Dilated Cardiomyopathy: Idiopathic vs.
Ischemic Etiology

First, I read the data from the file using the read-excel function from the readxl
package. I stored the data in the variable data. Then, I filtered the data to retain
only the rows where the column ”Etiologie CMD” has the values ”idiopatica” or
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”ischemica”. I achieved this using the filter function from the dplyr package and
stored the result in the variable filtered-data. The next step was to count each
etiology type in filtered-data using the count function from dplyr. The result is
stored in the variable etiologie-counts.

To add percentages to the chart, I used the mutate function from dplyr to
create a new column percent in etiologie-counts. This column calculates the per-
centage of each etiology type out of the total number of patients by dividing the
count of each etiology type by the total sum and multiplying the result by 100.

To create the chart, I used the ggplot2 package. I started with the ggplot
function, specifying etiologie-counts as the dataset and defining aesthetics (aes)
to use the number of patients (n) and the type of etiology for filling the chart. I
used geom-bar to create a bar chart with a width of 1 and coord-polar to transform
the bar into a pie chart.

I used theme-void to remove non-essential chart elements and theme to hide
the legend title. I added percentage labels using geom-text, positioning them in
the middle of each pie chart segment. The labels consist of percentages rounded
to one decimal place.

I added a title to the chart using ggtitle. I specified the colors for each pie
chart segment using scale-fill-manual with two colors: blue for ”idiopatica” and
red for ”ischemica”, as shown in Figure 12.

Figure 12: Distribution of Patients with Dilated Cardiomyopathy.

In the blue segment of Figure 12, representing idiopathic etiology, a percent-
age of 84.5% is observed. In the red segment, representing ischemic etiology, a
percentage of 15.5% is observed.
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3.6 Creating Pie Charts for Chronic Disease Analysis in R.

I commenced by installing and loading the necessary packages. These include
”dplyr” for data manipulation, ”ggplot2” for chart creation, and ”magrittr” for
utilizing the pipe operator. This was accomplished using the commands install.
packages (”dplyr”), install.packages(”ggplot2”), and install.packages (”magrittr”),
followed by loading the packages with library(dplyr), library(ggplot2), and li-
brary(magrittr). After the installation and loading of these packages, I proceeded
to import the data from the Excel file.

Subsequently, I ensured that the variables of interest were devoid of any miss-
ing values (Figure 13). This was achieved by replacing missing values with 0 for
the variables ”Diabet Zaharat”, ”Boală cronică de rinichi”, and ”HTA”.

To represent the combinations of diseases for each patient, I introduced a new
column in the dataset. This was done using the command data Combination,
which amalgamates the information regarding each patient’s diseases into a single
column.

The following step involved substituting any missing values in the ”Combina-
tion” column with ”Niciuna”. This step ensures that records with no associated
diseases are appropriately marked (Figure 13) To exclude records devoid of any

Figure 13: This step removes rows that do not contain any diseases

disease, specifically those with missing values, I filtered the dataset using the
filtered-data command. This process eliminates rows that do not indicate any
diseases (Figure 14).

To construct the pie charts, I employed the sophisticated capabilities of the
ggplot2 package. The detailed implementation of this function is illustrated in
Figure 14. The chart presented in Figure 15 illustrates the distribution of patients
based on the presence of Diabetes Mellitus. This diagram is divided into two
distinct sections, each representing the proportion of patients with and without
Diabetes Mellitus.

The blue section, representing 62.5%, indicates the proportion of patients who
have Diabetes Mellitus. This percentage suggests that a significant majority of
the patients in the dataset are diagnosed with this condition. On the other hand,
the red section, representing 37.5%, shows the proportion of patients who do not
have Diabetes Mellitus. This indicates that a smaller portion of the patients in
the dataset do not suffer from this disease. This pie chart serves as an effective
tool for swiftly and clearly visualizing the distribution of patients based on the
presence of Diabetes Mellitus.

Additionally, I employed the function depicted in Figure 15 to generate pie
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Figure 14: To create the pie charts, I used the ggplot2 function.

Figure 15: This chart is divided into two distinct sections, each representing the
proportion of patients with and without Diabetes Mellitus.

charts for the variables Chronic Kidney Disease (CKD) and Hypertension (HTN).
The pie chart presented in Figure 17 illustrates the distribution of patients based

Figure 16: Creating a pie chart for the variable BCR.

on the presence of Chronic Kidney Disease (CKD). This chart is divided into two
distinct sections, each representing the proportion of patients with and without
Chronic Kidney Disease. The blue section, representing 65%, indicates the pro-
portion of patients with Chronic Kidney Disease. This percentage suggests that
a significant majority of patients in the dataset are diagnosed with this condition.
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Figure 17: The chart is divided into two distinct sections, each representing the
proportion of patients with and without BCR.

Conversely, the red section, representing 35%, shows the proportion of patients
without Chronic Kidney Disease. This indicates that a considerable portion of
patients in the dataset do not suffer from this disease.

This pie chart is useful for quickly and clearly visualizing how the patient
set is divided based on the presence of Chronic Kidney Disease. The pie chart

Figure 18: Creating a pie chart for the variable HTA.

presented in Figure 19 illustrates the distribution of patients based on the presence
of hypertension (HTN). This chart is divided into two distinct sections, each
representing the proportion of patients with and without HTN.

The blue section, representing 42.5%, indicates the proportion of patients di-
agnosed with HTN. This percentage suggests that a significant portion of the
patients in the dataset are diagnosed with this condition. Conversely, the red
section, representing 57.5%, shows the proportion of patients without HTN. This
indicates that the majority of the patients in the dataset do not suffer from hy-
pertension.

This pie chart is an effective tool for swiftly and clearly visualizing the distri-
bution of patients based on the presence of hypertension. Finally, for a pie chart
representing multiple conditions, I defined a similar function to group and dis-
play the data from the ”Combination” column. The steps are detailed in Figure
20. Subsequently, I generated the chart using the create-combination-pie-chart
function. This sequence of commands produced a pie chart illustrating the dis-
tributions of Diabetes Mellitus, Chronic Kidney Disease, Hypertension, and their
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Figure 19: The distribution of patients with and without hypertension

Figure 20: Creating a chart for multiple conditions

combinations, while excluding patients without any conditions (Figure 21). The
pie chart presented in Figure 21 illustrates the distribution of patients based on
the multiple conditions they have.

• The red section indicates the proportion of patients with only Diabetes
Mellitus (DM), representing 5% of the total patients.

• The orange section shows the proportion of patients with both Diabetes
Mellitus (DM) and Hypertension (HTN), accounting for 10% of the total.

• The yellow section represents the proportion of patients with both Diabetes
Mellitus (DM) and Chronic Kidney Disease (CKD), making up 12.5% of the
total.

• The light green section indicates the proportion of patients with Diabetes
Mellitus (DM), Chronic Kidney Disease (CKD), and Hypertension (HTN),
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Figure 21: The pie chart based on various conditions

also representing 12.5% of the total.

• The green section shows the proportion of patients with only Hypertension
(HTN), representing 27.5% of the total patients, which is the largest sec-
tion, suggesting that hypertension is the most common condition among the
studied patients.

• The light blue section indicates the proportion of patients with only Chronic
Kidney Disease (CKD), representing 12.5% of the total.

• The purple section represents the proportion of patients with both Chronic
Kidney Disease (CKD) and Hypertension (HTN), making up 20% of the
total.

Hypertension (HTN) is the most prevalent condition, with 27.5% of patients hav-
ing only HTN, indicating that this condition is very common. A significant num-
ber of patients exhibit combinations of diseases, such as DM and HTN (10%),
DM and CKD (12.5%), and the complete combination of DM, CKD, and HTN
(12.5%). Additionally, 20% of patients have both Chronic Kidney Disease (CKD)
and Hypertension (HTN), suggesting a correlation between these two conditions.
This chart provides a clear visualization of the various pathologies present among
the studied patients.

3.7 Correlation and Regression of Variables

Correlation and linear regression for HTN, QRS Duration, EF, LVDD,
and LVSD

I began by ensuring that all variables needed for correlation calculation are
numeric. In the dataset, some variables may be read as factors or characters,
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so I transformed them into numbers using the as.numeric function. Each line
of code below performs this conversion for a specific variable. After converting
the variables, I checked the structure and content of the data to identify any
issues, such as missing values indicated by NA or values that were not correctly
converted.

We used the summary function to obtain a brief description of each variable in
the dataset: The next step was to select only the variables of interest for correla-

Figure 22: Transformation of variables HTA, QRS Duration, VTD, and VTS for
numeric correlation calculation.

tion calculation. I did this by creating a vector called vars containing the names of
the desired variables and then using this vector to extract the respective columns
from the original dataset. The result is a new dataset Data containing only the
selected variables. Then I calculated the correlation matrix using the cor func-
tion. I specified use = ”complete.obs” to ensure that only complete observations,
i.e., those without missing values, are used, and method = ”pearson” to use the
Pearson correlation method. This method measures the degree of linear associa-
tion between variables: Finally, I displayed the correlation matrix using the print

Figure 23: Calculation of the Correlation Matrix and Calculation Results.

function. This shows the correlation coefficient values for all pairs of selected vari-
ables. The correlation matrix shows the Pearson correlation coefficients between
the selected variable pairs. The Pearson correlation coefficient ranges from -1 to
1 and measures the degree of linear association between two variables: 1 indicates
a perfect positive correlation, -1 indicates a perfect negative correlation, and 0
indicates no correlation, i.e., no linear association. I then proceeded to analyze
the results for each pair of variables. Arterial Hypertension (HTA) and the other
variables show the following correlations: between HTA and VTD, the correlation
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coefficient is -0.22485260, suggesting a weak negative correlation between hyper-
tension and right atrium volume. As VTD increases, HTA may slightly decrease,
but this association is weak. Between HTA and VTS, the correlation coefficient is
-0.04510154, suggesting almost no correlation between HTA and left atrium vol-
ume. Between HTA and QRS Duration, the correlation coefficient is 0.01512290,
suggesting almost no correlation between HTA and QRS duration. Between HTA
and FE, the correlation coefficient is 0.13887000, suggesting a very weak positive
correlation between HTA and ejection fraction. VTD (Right Atrial Volume) and
the other variables show the following correlations: between VTD and VTS, the
correlation coefficient is 0.67785849, indicating a moderate-strong positive correla-
tion between right atrial volume and left atrial volume. This suggests that as right
atrial volume increases, left atrial volume tends to increase. Between VTD and
QRS Duration, the correlation coefficient is 0.07875215, suggesting a very weak
positive correlation between right atrial volume and QRS duration. Between VTD
and FE, the correlation coefficient is -0.59923268, indicating a moderate-strong
negative correlation between right atrial volume and ejection fraction. As right
atrial volume increases, ejection fraction tends to decrease. VTS (Left Atrial Vol-
ume) and the other variables show the following correlations: between VTS and
QRS Duration, the correlation coefficient is 0.03162304, suggesting almost no cor-
relation between left atrial volume and QRS duration. Between VTS and FE, the
correlation coefficient is -0.41931053, indicating a moderate negative correlation
between left atrial volume and ejection fraction. As left atrial volume increases,
ejection fraction tends to decrease. Regarding QRS duration and the other vari-
ables, the correlation coefficient between QRS Duration and FE is -0.08391294,
suggesting a very weak negative correlation between QRS duration and ejection
fraction. In conclusion, a moderately positive relationship was observed between
right atrial volume (VTD) and left atrial volume (VTS). Moderate-negative re-
lationships were also identified between right atrial volume (VTD) and ejection
fraction (FE), as well as between left atrial volume (VTS) and ejection fraction
(FE). The presented p-value matrix represents the results of a t-test for the dif-

Figure 24: It shows a matrix of p-values obtained from a t-test for multiple
variables. Each p-value in the matrix represents the result of a t-test for the
mean difference between pairs of variables.
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ferences between multiple variables, namely HTA, VTD, VTS, Durata QRS, and
FE. Each cell of the matrix, except those on the main diagonal, shows the p-value
for the t-test between pairs of variables. The main diagonal contains ”NA” values
because it does not make sense to compare a variable with itself. Interpreting the
p-values is essential for understanding the results of the t-test. A small p-value,
usually below 0.05, indicates a statistically significant difference between the two
compared variables, while a large p-value suggests that there is no statistically
significant difference between them.

For the variables HTA and VTD, the p-value of 0.1933597 indicates that there
is no statistically significant difference between them. Similarly, the p-value of
0.8385288 for the variables VTS and Durata.QRS suggests that there is no statis-
tically significant difference between these variables. However, a notable exception
is the pair of variables VTD and VTS, where the p-value of 2.614586e-10 indicates
a statistically significant difference, being very small.

In conclusion, most of the p-values in the matrix are above the 0.05 thresh-
old, suggesting that there are no statistically significant differences between the
respective pairs of variables. The major exception is the pair VTD and VTS,
where the extremely small p-value indicates a statistically significant difference.
The results presented in Figure 25 are part of the summary of a linear regression

Figure 25: Creation and Display of Linear Regression Model

model. In the first part of the result, the formula used in the regression model
appears, where HTA is the dependent variable, and QRS Duration, VTD, and
VTS are the independent variables. Residuals represent the differences between
the observed values and the model-predicted values. These provide an idea of the
error distribution: Min: -0.5874, 1Q (first quartile): -0.3533, Median: - 0.2417,
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3Q (third quartile): 0.5528, Max: 0.8302. The coefficients present the estimated
coefficients of the model and their statistical significance. The intercept has an
estimated value of 0.4618950 with a standard error of 0.5081742 and a p-value of
0.3688, suggesting it is not statistically significant. QRS Duration has an esti-
mated coefficient of 0.0008962, a standard error of 0.0036588, a t-value of 0.245,
and a p-value of 0.8078, indicating it is not significant. VTD has an estimated
coefficient of -0.0020322, a standard error of 0.0011613, a t-value of -1.750, and a
p-value of 0.0878, nearly significant at the 10% level. VTS has an estimated coeffi-
cient of 0.0013948, a standard error of 0.0014441, a t-value of 0.966, and a p-value
of 0.3399, indicating it is not significant. The p-value (Pr(> |t|)) indicates the
probability that the coefficient is different from zero simply due to chance. The
common threshold for statistical significance is 0.05: p-values < 0.05 indicate sta-
tistical significance, while p-values ≥ 0.05 indicate lack of statistical significance.
The significance codes show significance levels: ‘’ p <0.001, ‘’ p < 0.01, ‘’ p < 0.05,
‘.’ p < 0.1, and ‘ ’ p ≥ 0.1. Conclusions show that none of the predictors analyzed
are significant at the 5% level (p < 0.05). VTD has a p-value of 0.0878, suggesting
it might be significant at a more relaxed level (10%). QRS Duration and VTS
are not significant predictors of HTA. The scatterplots presented in Figure 26

Figure 26: Scatterplots between two variables

show each cell of the matrix representing a scatter plot between two variables.
For example, the cell in row 2, column 1 represents a scatter plot between HTA
and QRS Duration. The main diagonal of the matrix contains histograms of each
variable, showing the data distribution for that specific variable. The plots in the
first row (excluding the histogram) show the relationship between HTA and the
other variables. If the points are scattered without a clear pattern, it means there
is no evident relationship between HTA and that variable. From the presented
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graphs, there doesn’t seem to be an evident relationship between HTA and the
other variables (QRS Duration, VTD, VTS), as the points are scattered without
a clear trend. The plots in row 2, i.e., columns 3 and 4, show the relationship
between QRS Duration and the other two variables. Similarly, if the points are
scattered without a clear pattern, there is no evident relationship between these
variables. The plot in row 3, column 4 shows the relationship between VTD and
VTS. It seems to present a certain positive trend, suggesting a positive correla-
tion between VTD and VTS, i.e., as one increases, the other tends to increase.
The lack of evident relationship, scatterplots between HTA and QRS Duration,
VTD, and VTS do not show a clear pattern, suggesting there is no strong linear
relationship between them. The relationship between VTD and VTS: there is a
possible positive relationship between VTD and VTS, suggested by the tendency
of the points to align on an increasing line. The plot in Figure 27 is a residuals

Figure 27: Residuals Plot against Fitted Values

versus fitted values plot and is used to assess the performance and adequacy of
a linear regression model. This type of plot helps identify potential issues with
the model, such as nonlinearity, heteroscedasticity (unequal variance of residuals),
and the presence of influential points or outliers. The elements in the plot are the
X-axis representing the fitted (predicted) model values for the dependent variable,
HTA in this case, and the Y-axis representing the residuals, which are the differ-
ences between the observed values and the fitted values. The horizontal red line
represents the zero residual line, where the model perfectly predicts the observed
values. Interpretation of the Plot: The residuals should be randomly distributed
around the horizontal zero line. If we observe a clear pattern or structure in the
distribution of residuals, such as a curved shape or a cone, this may indicate is-
sues in the model, such as nonlinearity or heteroscedasticity. Residual Variance:
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The residuals should have constant variance (homoscedasticity). If the variance
of the residuals systematically increases or decreases with the fitted values, this
suggests heteroscedasticity, which can affect the validity of statistical inferences.
Points that are far from the majority of the residuals may be influential points or
outliers. These points can have a disproportionate effect on the model and may
require further investigation. In the plot in Figure 26, it can be observed that the
residuals are not completely randomly distributed around the zero line. There is a
clear pattern, with residuals appearing to form a linear structure, suggesting that
the model does not adequately capture the relationship between variables. This
is a sign of nonlinearity, indicating that the relationship between the predictors
(Durata-QRS, VTD, and VTS) and HTA is not linear and that a transformation of
variables or the use of a more complex model may be necessary. Additionally, the
residuals appear to have relatively constant variance, suggesting that there are no
major issues of heteroscedasticity. Analysis of Risk Factors Associated with HTA
Using Multinomial Regression I first checked if the nnet package is installed in R.
If it was not installed, it needed to be automatically installed and then loaded to
be used. I selected the data of interest from the dataset, retaining the HTA, Sex,
Age, BCR, and CMD Etiology columns, and removed rows containing missing
values to ensure the integrity of the analysis. Then, I transformed the Sex and
CMD Etiology variables into factors to be correctly used in the regression model.
I built a multinomial regression model for the dependent variable HTA, using the
explanatory variables Sex, Age, BCR, and CMD Etiology. The results of this
model were summarized to better understand the relationships between variables.
The model in Figure 28 adjusted six parameters, including the intercept and co-

Figure 28: Multinomial Regression and Its Results

efficients for the five explanatory variables. The initial value of the likelihood
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function was 40.202536, and the model performed up to 40 iterations to optimize
the likelihood function, reaching a final value of 31.297092. This indicates that
the algorithm converged to a stable solution and stopped. The coefficient results
of the model indicate that the intercept is -1.73487659, with a standard error of
2.1084652693, suggesting high variability in the estimation of this coefficient. The
coefficient for SexM (males) is 0.47886249, indicating that being male increases
the logit of the probability of having HTA compared to females, although standard
errors of 0.6474327977 suggest uncertainty in this estimation. The coefficient for
Age indicates that each additional year increases the logit of the probability of
having HTA by 0.01591882, but standard errors of 0.0337293291 indicate that this
effect is not significant. The coefficient for BCR (chronic kidney disease) suggests
that the presence of BCR reduces the logit of the probability of having HTA by
-0.36771347, but with a high degree of uncertainty, having a standard error of
0.7255780956. The very negative and small coefficient for CMD Etiology.ischemic
(-9.11117757) suggests a strong association between this etiology and a reduced
probability of HTA, and the extremely small standard errors (0.0003194576) in-
dicate high precision in estimating this coefficient. The residual deviance of the
model is 62.59418, measuring how well the model fits the data, and a lower value
indicates a better fit. The AIC (Akaike Information Criterion) is 72.59418, which
is a measure of model quality, penalizing its complexity. A lower AIC suggests a
better model. In conclusion,the model converged to a stable solution, indicating
that the calculated coefficients are reliable within the data and specified model.
The coefficients for SexM and Age show a slight increase in the probability of
having HTA with increasing age and being male, although these effects are not
strongly supported by our data, having relatively large standard errors. The coef-
ficient for CMD Etiology.ischemic shows a strong negative association with HTA,
suggesting that patients with this etiology have a significantly lower probability
of developing HTA.

The plot in Figure 29 illustrates the probability of developing hypertension
(HTA) based on gender. The X-axis represents the Sex variable, which has two
levels: female (F) and male (M). The Y-axis represents the probability of hav-
ing HTA. For females, the estimated probability of having HTA is around 0.30,
meaning that approximately 30% of females are likely to develop HTA according
to our model. For males, the probability is higher, being around 0.40, meaning
that 40% of males have a chance of developing HTA. The noticeable difference
between the two points on the plot indicates that males have a higher probability
of developing HTA compared to females. The trend line connecting the two points
suggests a linear increase in the probability of having HTA from females to males.
This underscores that male gender is associated with an increased risk of HTA
within the multinomial regression model used. The plot simplifies the understand-
ing of the influence of gender on the risk of HTA, highlighting that males have a
higher risk compared to females, according to the analyzed data and model. This
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Figure 29: Plot for HTA Probability by Patient Gender.

suggests the importance of considering gender factor in risk assessment and HTA
prevention strategies.

Figure 30: Creating the plot in the R system for HTA by Age.

The plot in Figure 31 illustrates the relationship between the probability of
developing hypertension (HTA) and age. The X-axis represents age in years, and
the Y-axis represents the probability of developing HTA. The title of the plot,
”Probability of HTA by Age,” clearly indicates that it shows how the probability
of having HTA varies as a person ages. The X-axis presents numerical values from
approximately 40 to 90 years old, indicating the age range studied. The Y-axis,
on the other hand, shows numerical values from 0.20 to over 0.35, representing
the probability of a person having HTA at a certain age. Each point on the
plot represents the probability of HTA for a certain age. We observe that these
points form an almost straight line, suggesting a linear relationship between age
and the probability of HTA. As age increases, the probability of developing HTA
also increases. For example, at the age of 40, the probability is approximately
20%, and at the age of 90, the probability increases to over 35%. This suggests
that older individuals have a higher risk of developing HTA compared to younger
individuals.
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Figure 31: Plot for HTA Probability by Age.

Figure 32: Creating the plot in the R system for HTA by Chronic Kidney Disease

Figure 33: Plot for HTA Probability by Chronic Kidney Disease

The plot presented in Figure 33 illustrates the probability of developing hy-
pertension (HTA) based on the presence of chronic kidney disease (CKD). The
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X-axis represents the CKD variable, which has two values: 0 (absence of CKD)
and 1 (presence of CKD). The Y-axis represents the probability of having HTA.
For patients without CKD (value 0 on the X-axis), the estimated probability of
having HTA is approximately 0.32 (or 32%). For patients with CKD (value 1 on
the X-axis), the probability decreases to approximately 0.26 (or 26%). The line
connecting the two points suggests an inversely proportional relationship between
the presence of CKD and the probability of developing HTA. This means that,
within the multinomial regression model used, patients with CKD have a lower
probability of developing HTA compared to those without CKD. This negative
relationship is surprising and could suggest a complex interaction between CKD
and HTA in the analyzed data. Overall, the result emphasizes the importance
of carefully examining all factors influencing the risk of HTA and the need for
further analysis to fully understand these relationships.

Figure 34: Creating the plot in the R system for HTA by CMD Etiology

Figure 35: Plot for HTA Probability by Dilated Cardiomyopathy Etiology

The plot presented in Figure 35 illustrates the probability of developing hy-
pertension (HTA) based on the etiology of dilated cardiomyopathy (CMD). The
X-axis represents two types of etiology: idiopathic and ischemic. The Y-axis rep-
resents the probability of having HTA. For patients with idiopathic etiology, the
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estimated probability of having HTA is approximately 30%. In the case of pa-
tients with ischemic etiology, the probability decreases significantly, approaching
zero. The line connecting the two points indicates an inversely proportional re-
lationship between CMD etiology and the probability of developing HTA. This
suggests that patients with CMD of ischemic etiology have a much lower prob-
ability of developing HTA compared to those with CMD of idiopathic etiology.
This strongly negative relationship reflected in the plot is consistent with the
very negative coefficient for CMD Etiology.ischemic in the multinomial regression
model, suggesting a strong and inverse association between ischemic etiology of
CMD and the probability of developing HTA. These results underscore the im-
portance of considering CMD etiology in assessing the risk of HTA and suggest
that factors specific to each etiology type can have a significant impact on the risk
of developing HTA.

Correlation between AV Sensed, AV Pace, HTA, METS, FE%

I started by checking that all variables needed for calculating the correlation
are expressed as numeric values. In some cases, in the dataset, these may initially
be represented as factors or characters, so I converted them into numeric values
using the as.numeric function. Each line of code below is responsible for this
conversion for a specific variable. After performing the necessary conversions, I
checked the structure and content of the data to identify any anomalies, such as
missing values or values that were not correctly converted. To obtain a summary
description of each variable in the dataset, I called the summary function. The
next step involved selecting only the relevant variables for calculating the corre-
lation. This was achieved by creating a vector named vars, which contains the
names of the desired variables, and then using this vector to extract the corre-
sponding columns from the original dataset. As a result, I obtained a new dataset
named data, which includes only the selected variables. Now, we can calculate the
correlation matrix using the cor function. I specified use = ”complete.obs” to en-
sure the use of only complete observations (without missing values) and method =
”pearson” to apply the Pearson method of correlation, which measures the degree
of linear association between variables. Finally, the correlation matrix is displayed
using the print function, highlighting the correlation coefficients for all pairs of
selected variables. In this section, we will examine the relationships between

Figure 36: Transformation of variables for numeric correlation calculation.
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the AV.sensed (atrioventricular sensing) variable and other variables of interest:
AV.pace (atrioventricular pacing), HTA (hypertension), METS (metabolic equiv-
alents), and FE (ejection fraction). Between AV.sensed and AV.pace, the correla-

Figure 37: Calculating the Correlation Matrix and Results

tion coefficient is 0.8051803, indicating a strong positive correlation. This suggests
that as atrioventricular sensing increases, atrioventricular pacing also increases.
Between AV.sensed and HTA, the correlation coefficient is 0.25575208, suggest-
ing a weak positive correlation between atrioventricular sensing and hypertension.
Regarding the relationship between AV.sensed and METS, the correlation coef-
ficient of 0.4669951 indicates a moderate positive correlation, suggesting that as
atrioventricular sensing increases, the level of physical activity increases. Between
AV.sensed and FE, the correlation coefficient is 0.24500545, indicating a weak pos-
itive correlation. Analyzing AV.pace and the other variables, between AV.pace
and HTA, the correlation coefficient is 0.14230296, indicating a very weak positive
correlation. Between AV.pace and METS, the correlation coefficient of 0.5338741
suggests a moderate positive correlation, indicating that as atrioventricular pac-
ing increases, the level of physical activity increases. In contrast, the relationship
between AV.pace and FE, with a correlation coefficient of -0.21710892, indicates
a weak negative correlation, suggesting that as atrioventricular pacing increases,
the ejection fraction tends to slightly decrease. In the relationship between HTA
and the other variables, between HTA and METS, the correlation coefficient is
0.3430194, indicating a moderate positive correlation. This suggests that as hy-
pertension increases, the level of physical activity increases, but this association
is moderate. Between HTA and FE, the correlation coefficient of -0.06239852 in-
dicates almost no correlation. For METS and the other variables, between METS
and FE, the correlation coefficient is -0.14664341, indicating a very weak negative
correlation. This suggests that as the level of physical activity increases, the ejec-
tion fraction tends to slightly decrease, but this association is very weak. In con-
clusion, all correlations with FE are quite weak, ranging between small negative
and positive values, indicating that there is no strong linear association between
ejection fraction and the other variables analyzed. Through correlation analysis,
several types of relationships between the studied variables have been identified.
Strong relationships are evident between atrioventricular sensing (AV.sensed) and
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atrioventricular pacing (AV.pace), where there is a strong positive correlation.
This suggests that as atrioventricular sensing activity increases, atrioventricular
pacing also increases. Regarding moderate relationships, atrioventricular sensing
(AV.sensed) and the level of physical activity (METS) exhibit a moderate positive
correlation. Similarly, atrioventricular pacing (AV.pace) and the level of physical
activity (METS) also have a moderate positive correlation, suggesting that both
variables are associated with an increase in the level of physical activity. Addi-
tionally, hypertension (HTA) and the level of physical activity (METS) show a
moderate positive correlation, indicating a relationship between increasing blood
pressure and physical activity. The rest of the variable pairs show weak or almost
non-existent correlations, suggesting that there is no significant linear association
between them. This indicates that for these variable pairs, variations in one are
not significantly associated with variations in the other. These results provide
insight into how different patient characteristics are associated. For example, a
strong correlation between AV.sensed and AV.pace indicates that these parame-
ters are closely related, which could be relevant for understanding the functioning
of medical devices or cardiac monitoring. Moderate and weak relationships may
require further analysis to better understand the interactions and clinical impli-
cations. To create a correlation plot that visualizes the relationships between
variables, I took the following steps: First, I installed the corrplot package. This
package provides functions for creating the correlation plot. To install and load
the package, I used the following commands: The data of interest are in a data
frame named data, and the variables of interest are AV.sensed, AV.pace, HTA,
METS, and FE. It is important that these variables are numeric to calculate the
correlations. If the variables are not already numeric, they can be transformed
using as.numeric. The next step involved calculating the correlation matrix for
the variables of interest. For this, I used the cor function, where I specified the
correlation method and how missing data are treated. Once the correlation ma-

Figure 38: Creating the correlation plot in the R system using the corrplot
function for the variables AV Sensed, AV Pace, HTA, METS, FE%.

trix was obtained, I created the correlation plot using the corrplot function. I
could choose different representation methods, such as circle, number, or color.
The color and size of the circles represent the magnitude and direction of the cor-
relation. Larger and more intense circles in color indicate stronger correlations.
Blue color indicates positive correlations, while red color indicates negative cor-
relations. If I chose the number method, the correlation coefficients are displayed
directly on the plot, making it easier to interpret the exact values.
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Figure 39: Correlation plot for the variables AV Sensed, AV Pace, HTA, METS,
FE%.

Figure 40: Displaying the regression model summary

The results presented in Figure 40 are part of the summary of a linear regres-
sion model.

In Figure 38, the formula used in the regression model is presented, where
HTA is the dependent variable, and AV.sensed, AV.pace, METS, and FE are the
independent variables. Residuals represent the differences between the observed
values and the values predicted by the model. They provide an idea of the distri-
bution of errors: Min: -0.62856, 1Q (first quartile): -0.33749, Median: -0.00417,
3Q (third quartile): 0.39812, Max: 0.72066. Coefficients present the estimated
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coefficients of the model and their statistical significance. The intercept has an
estimated value of 0.900818, but it is not statistically significant (p = 0.498). The
coefficient for AV.sensed is 0.011949, but it is not statistically significant (p =
0.251). The coefficient for AV.pace is -0.010362, but it is not statistically signifi-
cant (p = 0.276). The coefficient for METS is 0.083180, but it is not statistically
significant (p = 0.366). The coefficient for FE is -0.036573, but it is not statisti-
cally significant (p = 0.369). Standard residuals show the standard error of the
residuals, which is a measure of the variation of the residuals. The smaller the
value, the better the model. In this case, the standard error of the residuals is
0.5251. R-squared represents the proportion of variance in the dependent variable
(HTA) explained by the model. In this case, R-squared is 0.2341 (23.41%), which
means the model explains 23.41% of the variance in HTA. Adjusted R-squared
takes into account the number of predictors and the sample size and is -0.07228,
indicating a poor model adjustment. The F-statistic is used to test the overall
significance of the model. In this case, the F-value is 0.7641, and the p-value is
0.5721, suggesting that the model is not statistically significant (since p > 0.05).
The conclusions show that none of the predictors analyzed are statistically signif-
icant at the 5% level (p < 0.05). The overall model is not statistically significant
(p-value = 0.5721). R-squared and Adjusted R-squared suggest that the model
poorly explains the variance in HTA. These results suggest that the variables
AV.sensed, AV.pace, METS, and FE are not significant predictors for HTA in
this dataset. It may be necessary to explore other variables or models to better
understand the factors influencing HTA.

Figure 41: The Figure shows a matrix of p-values obtained from a t-test for
multiple variables: AV.sensed, AV.pace, HTA, METS, and FE. Each p-value in
the matrix represents the result of a t-test for the mean difference between pairs
of variables.

Interpreting the p-values is essential for understanding the results of the t-test.
A small p-value ,usually below 0.05 indicates a statistically significant difference
between the two compared variables, while a large p-value suggests that there is
no statistically significant difference between them.

The results of the matrix are as follows:

• AV.sensed and AV.pace have a p-value of 1.359167e-13, indicating a statis-
tically significant difference between them.
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• AV.sensed and HTA have a p-value of 0.6551433, suggesting that there is
no statistically significant difference between them.

• AV.sensed and METS have a p-value of 0.07925723, which is close to the
0.05 threshold but does not indicate a statistically significant difference.

• AV.sensed and FE have a p-value of 0.7539307, suggesting that there is no
statistically significant difference between them.

• AV.pace and HTA have a p-value of 0.2675836, indicating that there is no
statistically significant difference between them.

• AV.pace and METS have a p-value of 0.04038120, indicating a statistically
significant difference between them.

• AV.pace and FE have a p-value of 0.5945990, suggesting that there is no
statistically significant difference between them.

• HTA and METS have a p-value of 0.2106937, suggesting that there is no
statistically significant difference between them.

• HTA and FE have a p-value of 0.5029072, suggesting that there is no sta-
tistically significant difference between them.

• METS and FE have a p-value of 0.6020119, suggesting that there is no
statistically significant difference between them.

In conclusion, most pairs of variables do not show statistically significant dif-
ferences, except for the pairs AV.sensed and AV.pace, and AV.pace and METS,
where the p-values are very small, indicating statistically significant differences.

Each cell in the matrix represents a scatterplot between two variables. For
example, the cell in the second row, first column represents a scatterplot between
AV.sensed and AV.pace. On the main diagonal of the matrix are the histograms
of each variable, showing the data distribution for that specific variable. The plots
on the first row (except the histogram) show the relationship between AV.sensed
and the other variables. The points are spread in a pattern that shows a posi-
tive correlation between AV.sensed and AV.pace, indicating that as one variable
increases, the other tends to increase. The relationship between AV.sensed and
the other variables (HTA, METS, FE) does not show a clear pattern, indicating
a weak or nonexistent correlation. The plots in the second row (columns three,
four, and five) show the relationship between AV.pace and the other variables. The
points are scattered without a clear pattern, suggesting that there is no strong
linear relationship between AV.pace and these variables. The plots in the third
row (columns four and five) show the relationship between HTA and the other
variables. The points are scattered without a clear pattern, indicating a weak or
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Figure 42: Each cell in the matrix represents a scatterplot between two variables.

nonexistent correlation between HTA and METS, as well as between HTA and
FE. The plot in the fourth row, column five shows the relationship between METS
and FE. The points are scattered randomly, suggesting that there is no strong lin-
ear relationship between METS and FE. In conclusion, scatterplots between most
variables (AV.sensed, AV.pace, HTA, METS, FE) do not show a clear pattern,
suggesting that there are no strong linear relationships between them. However,
there is a positive correlation between AV.sensed and AV.pace, as suggested by
the clear pattern in the scatterplot between these two variables.

Figure 43: Plot of residuals versus fitted values

The plot I uploaded is a plot of residuals versus fitted values, and I use it to
evaluate the performance and adequacy of the linear regression model. This type
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of plot helps me identify possible issues with the model, such as non-linearity,
heteroscedasticity (unequal variance of residuals), and the presence of influential
points or outliers. On the X-axis are the fitted (estimated) values of the model for
the dependent variable (HTA in this case), and on the Y-axis are the residuals,
which are the differences between the observed values and the fitted values. The
horizontal red line represents the zero residual line, where the model perfectly
predicts the observed values. Residuals should be distributed randomly around the
zero line. If I observe a clear pattern or structure in the distribution of residuals,
such as a curved shape or a cone, this may indicate issues in the model, such
as non-linearity or heteroscedasticity. Residuals should have constant variance.
If the variance of residuals systematically increases or decreases with the fitted
values, this suggests heteroscedasticity, which can affect the validity of statistical
inferences. Points that are far from the majority of residuals may be influential
points or outliers. These may have a disproportionate effect on the model and
may require further investigation. In the plot I presented, I observe that the
residuals are not completely randomly distributed around the zero line. There is a
clear pattern, with residuals forming a linear structure, suggesting that the model
does not adequately capture the relationship between variables. This is a sign of
non-linearity, indicating that the relationship between my predictors (AV.sensed,
AV.pace, METS, FE) and HTA is not linear and that a transformation of variables
or the use of a more complex model may be necessary. Additionally, the residuals
seem to have relatively constant variance, suggesting that there are no major
issues with heteroscedasticity. However, the linearized pattern indicates that the
current model is not adequate, and I should explore other functional forms or
models to better capture the relationship between variables.

Correlation and Regression applied to the variables FE%, Age, QRS
Duration, LVD, LVS, IVS, LV EDD, sPAP, and LA.V

The first step was to install and load the necessary packages for data ma-
nipulation and visualization. I installed the dplyr package, known for its data
manipulation capabilities. I loaded the packages dplyr, readxl, and ggplot2 into
the current R session. The readxl package is used for reading Excel files, while
ggplot2 is used for creating detailed and customizable data visualizations. The
next step was to read the ODS file containing the data needed for my analysis.
I specified the path to the ODS file and used the read-excel function to read
the data from the first sheet of the file. The data was then stored in the variable
”data”. To verify that the data was loaded correctly, I displayed the first few rows
of the dataset using the head function. This step is important to confirm that the
structure and content of the data align with expectations. Next, I used the attach
function to attach the dataset, allowing me to access variables directly by their
names, thereby simplifying the code and subsequent manipulations. To explore
the dataset in more detail, I opened a viewing window using the View function
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(Figure 42), providing an intuitive graphical interface for data examination.

Figure 44: Displaying the dataset in the R system

I selected only the relevant columns from the dataset using the select function
from dplyr. These columns include FE., Age, QRS Duration, VTD, VTS, IVS,
LV.EDD, sPAP, and LA.V, which I consider important for my analysis. To con-
vert categorical variables into factors, I used the mutate function, converting the
variables Sex, Etiology.CMD, and NYHA into factors, facilitating their statistical
analysis.

An important step was to remove rows with missing values from the dataset
using the na.omit function. This ensured that subsequent analysis would not be
affected by missing data. Finally, to verify the correctness of the data selection
and preprocessing, I displayed the first few rows of the relevant-data dataset using
the head function.

The result of these operations is a subset of data containing only the variables
of interest and without rows with missing values. In this subset, the variables are:
Ejection Fraction (FE.), Age (Varsta), QRS Duration (Durata.QRS), Left Ven-
tricular Telediastolic Volume (VTD), Left Ventricular Telesystolic Volume (VTS),
Interventricular Septum Thickness (IVS), Left Ventricular End-Diastolic Diame-
ter (LV.EDD), Systolic Pulmonary Artery Pressure (sPAP), Left Atrial Volume
(LA.V), Patient Sex (Sex), Dilated Cardiomyopathy Etiology (Etiologie.CMD),
and NYHA Functional Classification (NYHA). This subset of data is now pre-
pared for further statistical analyses and visualizations, ensuring that the data is
clean and correctly preprocessed.

We began by selecting the relevant numeric variables using the select-if func-
tion from the dplyr package, thus ensuring that we are working only with numeric
data. Subsequently, we calculated the correlation matrix between these variables
using the cor function, which included only complete observations, thereby elim-
inating any missing values that could distort the results. To visualize the results,
we used the print function to display the correlation matrix, indicating how the
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Figure 45: The first 6 rows of the dataset were displayed using the head function

numeric variables correlate with each other. The values in the matrix range from
-1 to 1, where 1 represents a perfect positive correlation, -1 indicates a perfect
negative correlation, and 0 suggests no correlation. The results of the correlation
matrix highlighted several important relationships between variables. For exam-
ple, the ejection fraction (FE.) showed a strong negative correlation with the left
ventricular telediastolic volume (VTD) and left ventricular telesystolic volume
(VTS), indicating that a higher ejection fraction is associated with smaller tele-
diastolic and telesystolic volumes. Age showed weak correlations with the other
variables, with the most notable being with the ejection fraction. The duration
of the QRS complex had a moderate positive correlation with the thickness of
the interventricular septum (IVS) and the left ventricular end-diastolic diameter
(LV.EDD), suggesting that a longer duration of the QRS complex is associated
with a greater thickness of the interventricular septum and a larger left ventricular
end-diastolic diameter. The telediastolic and telesystolic volumes were strongly
correlated with each other and had moderate correlations with the left ventric-
ular end-diastolic diameter, indicating that larger volumes are associated with
larger ventricular diameters. The thickness of the interventricular septum had
a moderate positive correlation with the duration of the QRS complex and the
left ventricular end-diastolic diameter. The left ventricular end-diastolic diame-
ter showed moderate correlations with the duration of the QRS complex and the
telediastolic volume, indicating a relationship between the dimensions of the left
ventricle and these variables.

Moving on to the visual representation of the correlation. The presented
graph is a visual correlation matrix showing the relationships between the numeric
variables in the dataset. The horizontal and vertical axes display the variables
FE, Age, QRS Duration, VTD, VTS, IVS, and LV.EDD. Each circle in the graph
represents the correlation coefficient between two variables.
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Figure 46: Visual representation of the correlation

Figure 47: Visualization of the correlation

The color of the circles indicates the direction of the correlation: red for pos-
itive correlations and blue for negative correlations. The redder the circle, the
stronger the positive correlation, while a bluer circle indicates a stronger negative
correlation. White circles indicate a very weak or nonexistent correlation. The
size of the circles reflects the magnitude of the correlation; larger circles indicate
a stronger correlation. From the graph, we observe that the ejection fraction
(FE.) has a strong negative correlation with the left ventricular telediastolic vol-
ume (VTD) and left ventricular telesystolic volume (VTS). This means that a
higher ejection fraction is associated with smaller telediastolic and telesystolic
volumes. In contrast, the ejection fraction shows a moderate positive correla-
tion with the thickness of the interventricular septum (IVS). Age (Age) has weak
correlations with the other variables, with the most notable being a weak pos-
itive correlation with the ejection fraction. The duration of the QRS complex
(QRS Duration) shows a strong positive correlation with the thickness of the in-
terventricular septum and the left ventricular end-diastolic diameter (LV.EDD),
suggesting that a longer duration of the QRS complex is associated with a greater
thickness of the septum and a larger left ventricular end-diastolic diameter. The
telediastolic volume (VTD) and telesystolic volume (VTS) are strongly correlated
with each other and have moderate positive correlations with the left ventricular
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end-diastolic diameter. The thickness of the interventricular septum (IVS) has
a moderate positive correlation with the duration of the QRS complex and the
left ventricular end-diastolic diameter. This graph is useful for understanding the
relationships between the numeric variables in the dataset and for guiding further
statistical analyses.

Next graph is a diagnostic set for a linear regression analysis. It consists of
four sub-plots that help assess the quality and adequacy of the regression model.
Here’s a detailed explanation of each subplot: The ”Residuals vs Fitted” plot

Figure 48: Linear Regression Analysis, consisting of four sub-plots that help
assess the quality and adequacy of the regression model.

(Figure 48) shows the residuals (differences between observed and model-predicted
values) on the vertical axis and the fitted values on the horizontal axis. Its pur-
pose is to check linearity and homoscedasticity (constant variance of residuals).
Residuals should be randomly distributed around the horizontal line at zero. The
”Normal Q-Q” plot compares standardized residuals to the theoretical normal
distribution (dotted line). Its purpose is to check whether residuals follow a nor-
mal distribution. Points should follow the straight diagonal line if residuals are
normally distributed. Significant deviations from the line suggest non-compliance
with the normality assumption. The ”Scale-Location (Spread-Location)” plot
shows the square root of standardized residuals on the vertical axis and fitted
values on the horizontal axis. Its purpose is to check homoscedasticity. Points
should be evenly distributed along the plot. The ”Residuals vs Leverage” plot
shows standardized residuals on the vertical axis and leverage on the horizontal
axis. Its purpose is to identify influential observations. Observations with high
leverage and large residuals have a significant impact on model fitting. The red
line represents Cook’s distance, a measure of each observation’s influence. Points
exceeding the Cook’s line are considered influential and should be investigated.
Conclusions: These diagnostic plots are essential for evaluating the quality and
adequacy of the regression model. The ”Residuals vs Fitted” plot shows that
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residuals seem to be randomly distributed around the horizontal line, which is a
good sign. The ”Normal Q-Q” plot suggests that although most residuals follow
the normal distribution, there are a few notable deviations. The ”Scale-Location”
plot indicates a relatively uniform distribution of points, suggesting homoscedas-
ticity. The ”Residuals vs Leverage” plot highlights some observations with high
leverage, but they do not seem to significantly exceed the Cook’s line, indicating
that there are no excessively influential observations. Moving on to the graph
representing the relationship between patients’ age (Age) and ejection fraction
(FE) using a linear regression model

Figure 49: The results of a simple linear regression analysis, investigating the
relationship between age (Varsta) and ejection fraction (FE).

The residual results show the differences between the observed values and
the values estimated by the model. The minimum and maximum residual values
are -13.9356 and 11.5004, respectively, while the first quartile, median, and third
quartile values are -2.8449, 0.3642, and 3.4977, indicating the variability of the
differences between the estimated and actual values. The intercept coefficient
has a value of 17.33625, with a standard error of 3.49052, a t-statistic of 4.967,
and a very small p-value of 6.34e-06, indicating high statistical significance. The
coefficient for the age variable (Varsta) is 0.15804, with a standard error of 0.05527,
a t-statistic of 2.859, and a p-value of 0.00589, showing that this coefficient is also
statistically significant. The significance codes suggest different levels of statistical
significance, where *** indicates a p-value less than 0.001, ** indicates a p-value
less than 0.01, * indicates a p-value less than 0.05, and indicates a p-value less than
0.1. The very small p-values for both coefficients show that they are significantly
different from zero.

The residual standard error is 5.306, calculated over 58 degrees of freedom,
indicating the variability of the residuals and giving an idea of how well the model
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fits. The R-squared statistic, with a value of 0.1235, indicates the proportion of
the variability in the ejection fraction (FE) explained by age. An R-squared of
0.1235 means that approximately 12.35% of the variability in the ejection fraction
is explained by age, while the adjusted R-squared is 0.1084.

The F-statistic has a value of 8.175 on 1 and 58 degrees of freedom, with a p-
value of 0.005892, indicating that the model is significant overall. The black dots

Figure 50: Observed values for each patient

in Figure 50 represent the observed values for each patient, with age on the X-
axis and ejection fraction on the Y-axis. The blue line is the linear regression line,
showing the general trend of the relationship between age and ejection fraction.
Interpreting the regression coefficients shows that the intercept (17.33625) is the
estimated value of the ejection fraction (FE) when age is zero. Although an age of
zero is not realistic for patients, this coefficient provides a reference point for the
regression line. The slope (0.15804) represents the rate of change of the ejection
fraction per unit of age. For each year increase in age, the ejection fraction
increases on average by 0.15804 units. The p-value for Age (0.00589) indicates
that, since the p-value is less than 0.05, the coefficient for age is statistically
significant. This means that there is a significant relationship between age and
ejection fraction at a 95% confidence level. The Multiple R-squared (0.1235)
indicates that approximately 12.35% of the variation in ejection fraction (FE) can
be explained by variation in age. A lower R-squared may suggest that there are
other important factors influencing the ejection fraction that are not included in
this simple model. The overall interpretation of the graph and statistical results
shows a positive relationship between age and ejection fraction, although this
relationship is relatively weak (R2 of 0.1235). Increasing age is associated with a
slight increase in ejection fraction, but age explains only a small portion of the
total variation in ejection fraction.
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4 Conclusion

This study investigated the relationships between various cardiac parameters
through the application of statistical correlation and regression methods, using
data collected from 54 patients at the Timis,oara Institute of Cardiovascular Dis-
eases. The analysis aimed to improve the understanding of the mechanisms un-
derlying heart failure and identify factors contributing to the optimization of
treatment through cardiac resynchronization.

Significant Correlations: Correlation analysis revealed a strong negative cor-
relation between ejection fraction (FE) and telediastolic (VTD) and telesystolic
(VTS) volumes, indicating that patients with higher ejection fractions have smaller
ventricular volumes. This relationship is crucial for understanding the pathophys-
iology of heart failure. Ventricular Volumes: The moderate positive correlation
between telediastolic and telesystolic volumes suggests that ventricular dilatation
is an important factor in the assessment and management of patients with heart
failure.

AV Parameters and Physical Activity: Linear regression indicated a close link
between AV.sensed and AV.pace, while physical activity measured by METS was
not a significant predictor of ejection fraction. This underscores the importance
of monitoring electrophysiological parameters in heart failure management.

Arterial Hypertension: Weak correlations between hypertension and other
variables suggest a complexity of factors influencing this condition, highlighting
the need for a more holistic approach in treating patients with both hypertension
and heart failure. Scatterplots and Residual Plots: Analysis of residual plots
highlighted the presence of influential points and anomalies, indicating the need
for further investigation to improve the quality of the regression models used.

Clinical Implications The obtained results provide valuable insights for clinical
practice. Understanding the relationships between different cardiac parameters
can guide physicians in personalizing the treatment of patients with heart failure,
thereby improving treatment efficiency and outcomes. Careful monitoring of ejec-
tion fraction, ventricular volumes, and electrophysiological parameters is essential
for the effective management of these patients.

Limitations and Recommendations for Future Research While the study pro-
vided valuable information, there are limitations such as the relatively small sam-
ple size and potential unaccounted variables that could influence the results.

In conclusion, the use of descriptive statistical methods, correlations, and re-
gressions provided a solid foundation for understanding the complexity of cardiac
pathology. These methods allowed the highlighting of essential relationships be-
tween the studied variables, thus contributing to the improvement of clinical and
therapeutic approaches in heart failure treatment.
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