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the Poincaré Lie Group . . . . . . . . . . . . . . . . . . . . . . . . . 5
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In Memoriam - Constantin CORDUNEANU

July 26, 1928 - December 26, 2018

Last December Professor Constantin CORDUNEANU left us at the age of
90. He was a member of the Editorial Board of the Scientific Bulletin of Politehnica
University of Timisoara, Transactions on Mathematics and Physics since 2002.

Constantin Corduneanu was born in the Romanian village of Potangeni, Iaşi
county. In 1951 he graduated the University of Iaşi. Four years later he obtained
his PhD degree in Mathematics having Professor Ilie Popa as PhD Advisor and
professors Miron Nicolescu, Grigore C. Moisil and Adolf Haimovici as referees.

Between 1949 and 1977 he was assistant, lecturer, associated professor, then
professor at the ”Alexandru Ioan Cuza” University of Iaşi, Faculty of Mathematics.
He was appointed Dean of the Faculty of Mathematics (1968-1972) and Rector of
the University (1966-1968). He became a member of the Romanian Academy in
1974.

Constantin Corduneanu left the country in 1978 to become a professor at
the University of Texas at Arlington, USA. He published more than 200 books and
scientific articles from various research areas such as differential equations, stability
theory or theory of oscillating movements and waves. Dr. Corduneanu taught for
over 4000 Romanian and 3000 American Students and guided over 20 PhD students.

Dr. Corduneanu was the first author from Iaşi whose book was translated
in USA (Almost Periodic Functions, John Wiley, New York, 1968, Chelsea, 1989).
Other important books containing the lectures he taught in Romania or in USA
were published at prestigious publishing houses: Integral Equations and Stability
of Feedback Systems (New York, 1973), Integral Equations and Applications (Cam-
bridge University Press, 1991 and 2008), Functional Equations with Causal Oper-
ators (Taylor and Francis, London, 2002), Almost periodic oscillations and waves
(Boston, New York, 2009).

Dr. Corduneanu was a member of the Editorial Boards of several Jour-
nals including the Scientific Annals of ”Alexandru Ioan Cuza” University of Iaşi,
Mathematics Transitions, Revue Roumaine de Mathématiques Pures et Appliquées,
Journal of Integral Equations and Applications, Differential and Integral Equations,
Nonlinear Analysis - TMA and in his last years he has collaborated with nine math-
ematical journals from Romania, China, Ukraine, Israel and South Korea.

Professor Corduneanu was a recipient of the Ministry of Education Prize in
1963, the ”Gheorghe Lazăr” Prize of Romanian Academy in 1965, the Distinguished
Research Award of the University of Texas at Arlington, USA in 1991 and The
Medal of Merit of the Czech Mathematical Society in 2001.

Editors - The Scientific Bulletin of
Politehnica University of Timisoara
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STABILITY PROBLEMS AND NUMERICAL
INTEGRATION ON THE POINCARÉ LIE GROUP

Camelia POP, Ramona Ioana IOSIF
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Abstract

An underactued drift-free left-invariant control system on the Lie group
ISO(3, 1) is analyzed. 1

Keywords and phrases: spectral stability, Lie group

1 Introduction

The Poincaré group ISO(3, 1) was first defined by Minkowski (1908) as the group
of Minkowski space-time isometries. It can be written as a semi-direct product of
the Lorentz group SO(3,1) with the four-dimensional translation group R4. Due
to its big importance in quantum theory of fields, we are interested to study an
optimal control problem on this Lie group. The interest in such problems arise
from their deep applications in engineering (spacecraft dynamics, sub-aquatic
dynamics, the tower control problem), in chemistry (molecular motion control)
or physics (quantum theory).

2 An optimal control problem on the Poincaré Lie
group

Let us consider {Ji,Ki, Pi, H}(1=i,j=3) the usual generators of spatial rotations,
boosts, space translations, and time translation respectively, of the Poincaré in-
homogeneous Lie algebra iso(3, 1); the nonzero brackets are given by:

[Ji, Jj ] = εijkJk; [Ji, Pj ] = εijkPk; [Ji,Kj ] = εijkKk;

[H,Kj ] = Pi; [Ki,Kj ] = −εijkJk; [Pi,Ki] = H.

1MSC(2010): 34A26, 34H05, 34M45, 35A24, 37C10, 49J15, 49K15, 93C15
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6 C. Pop, I. Iosif

A general left invariant drift free control system on the Poincaré Lie algebra
iso(3, 1) with fewer controls than state variables can be written in the following
form:

.
X = X(

m∑

i=1

uiAi),

where X ∈ ISO(3, 1), the functions ui are the control inputs, and m < 10. In all
that follows, we shall concentrate to the following left-invariant, drift-free control
system on ISO(3, 1) with 4 controls:

.
X = X(u1J1 + u2K1u3K2 + u4H). (1)

Theorem 2.1 The system (1) is controllable.

Proof: Since the span of the set of Lie brackets generated by J1,K1,K2, H
coincides with iso(3, 1), the Proposition is a consequence of a result due to Jur-
djevic and Sussman, see [6].

Let C be the cost function given by:

C(u1, u2, u3, u4) =
1

2

tf∫

0

[u21(t) + u22(t) + u23(t) + u24(t)]dt.

The controls that minimize C and steer the system (1) from the initial state
X = X0 at t = 0 to the final state X = Xf at t = tf are giving by the solutions
of the following differential equations:





j
′
1 = k2k3
j
′
2 = −j1j3 − k1k3
j
′
3 = j1j2
k
′
1 = −k2j3 + hp1
k
′
2 = −k3j1 + k1j3 + hp2
k
′
3 = 2j1k2 − j2k1 + hp3
p
′
1 = −hk1
p
′
2 = −j1p3 − hk2
p
′
3 = j1p2
h
′

= k1p1 − p2k2

(2)

The system is obtained by applying Krishnaprasad’s theorem (see [7]) to the
optimal Hamiltonian given by:

Hopt =
1

2
(j21 + k21 + k22 + h2).
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Theorem 2.2 The dynamics (2) has the following Poisson realization:

(iso(3, 1),Π−, H),

where:

Π− =




0 j3 −j2 0 k3 −k2 0 p3 −p2 0
−j3 0 j1 −k3 0 k1 −p3 0 p1 0
j2 −j1 0 k2 −k1 0 p2 −p1 0 0
0 k3 −k2 0 −j3 j2 h 0 0 p1
−k3 0 k1 j3 0 −j1 0 h 0 p2
j2 −k1 0 −j2 j1 0 0 0 h p3
0 p3 −p2 −h 0 0 0 0 0 0
−p3 0 p1 0 −h 0 0 0 0 0
p2 −p1 0 0 0 −h 0 0 0 0
0 0 0 −p1 −p2 −p3 0 0 0 0




(3)

is the minus-Lie-Poisson structure on iso(3, 1), and

H =
1

2
(j21 + k21 + k22 + h2)

is the Hamiltonian function.

Proof: Indeed, it is not hard to see that the dynamics (2) can be written as

(
j
′
1 j

′
2 j

′
3 k

′
1 k

′
2 k

′
3 p

′
1 p

′
2 p

′
3 h

′
)t

= Π− ·H

and Π− is the minus-Lie-Poisson structure on iso(3, 1).

Corollary 2.1 The Lie-Poisson structure Π− admits two linear independent Casimir
operators:

C1 =
1

2
(p21 + p22 + p23 − h2), (4)

and

C2 = (−hj3 − p1k2 + p2k1)
2 + (hk2 − p1k3 + p3k1)

2+

+(−hj1 − p2k3 + p3k2)
2 − (p3j3 + p1j1 + p2j2)

2. (5)
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3 Stability

The goal of this section is to analyze the spectral stability of the equilibrium
states of the dynamics (2):

eMNPQRS
1 = (0,M,N, 0, 0, P,Q,R, S, 0), eMNPQ

2 = (0, 0, 0,M,N, 0, P,−MP

N
,Q, 0),

eMNPQ
3 = (0,M, 0, 0, N, 0, P, 0, Q, 0), eMNPQ

4 = (0, 0,M, 0, 0, N, P, 0, Q, 0),

eMNP
5 = (0, 0, 0,M, 0, 0, 0, N, P, 0), eMN

6 = (M, 0, 0, N, 0, 0, 0, 0, 0, 0, ),

eMN
7 = (M, 0, 0, 0, 0, 0, N, 0, 0, 0), eMN

8 = (−M√
2
, 0, 0, 0, N, 0, 0, 0,

√
2,M),

eMN
9 = (M, 0, 0, 0, 0, 0, 0, 0, 0, N), eMNPQ

10 = (0,M,N, 0, 0, P, 0, 0, 0, Q).

Theorem 3.1 (i) The equilibrium states eMNPQRS
1 are spectrally stable iff

P 6= 0 and Q 6= 0.

(ii) The equilibrium states eMNPQ
2 are unstable for any nonzero reals M,N,P,Q.

(iii) The equilibrium states eMNPQ
3 are spectrally stable iff N = 0.

(iv) The equilibrium states eMNPQ
4 are spectrally stable iff P 6= 0 and N 6= 0.

(v) The equilibrium states eMNP
5 are are unstable for any nonzero reals M,N,P.

(vi) The equilibrium states eMN
6 are are unstable for any nonzero reals M,N.

(vii) The equilibrium states eMN
7 are are spectrally stable for any reals M,N.

(viii) The equilibrium states eMN
8 are are unstable for any nonzero reals M,N.

(ix) The equilibrium states eMN
9 are spectrally stable iff M < − |N |√

2
or M > |N |√

2
.

(x) The equilibrium states eMNPQ
10 are spectrally stable iff Q 6= 0.
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Proof: Let A be the matrix of the linear part of the system (2):

A =




0 0 0 0 k3 k2 0 0 0 0
−j3 0 −j1 −k3 0 −k1 0 0 0 0
j2 j1 0 0 0 0 0 0 0 0
0 0 −k2 0 −j3 0 h 0 0 p1
−k3 0 k1 j3 0 −j1 0 h 0 p2
2k2 −k1 0 −j2 2j1 0 0 0 h p3
0 0 0 −h 0 0 0 0 0 −k1
−p3 0 0 0 −h 0 0 0 −j1 −k2
p2 0 0 0 0 0 0 j1 0 0
0 0 0 −p1 −p2 0 −k1 −k2 0 0




.

The corresponding eigenvalues of the linearized A(e1) are λi = 0, i = ¯1, 6, and

λ7,8,9,10 = ±
√
−N2 − P 2 −Q2 −R2 ±

√
−4P 2Q2 + (N2 + P 2 +Q2 +R2)2

2
,

so the assertion follows immediately.
Similar arguments provides us all the statements.

4 Numerical Integration via Lie-Trotter Integrator

We shall discuss now the numerical integration of the dynamics (2) via the Lie-
Trotter integrator (see [11]). For the beginning, let us observe that the Hamilto-
nian vector field XH splits as follows:

XH = XH1 +XH2 +XH3 +XH4 ,

where

H1 =
1

2
j21 , H2 =

1

2
k21, H3 =

1

2
k22, H4 =

1

2
h2.

Their corresponding integral curves are respectively given by:



j1(t)
j2(t)
j3(t)
k1(t)
k2(t)
k3(t)
p1(t)
p2(t)
p3(t)
h(t)




= Ai




j1(0)
j2(0)
j3(0)
k1(0)
k2(0)
k3(0)
p1(0)
p2(0)
p3(0)
h(0)




, i = 1, 2, 3, 4,
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where

A1 =




1 0 0 0 0 0 0 0 0 0
0 1 e−at − 1 0 0 0 0 0 0 0
0 eat − 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 e−at − 1 0 0 0 0
0 0 0 0 eat − 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 e−at − 1 0
0 0 0 0 0 0 0 eat − 1 1 0
0 0 0 0 0 0 0 0 0 1




, a = j1(0),

A2 =




1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 e−bt − 1 0 0 0 0

0 0 1 0 ebt − 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

0 0 ebt − 1 0 1 0 0 0 0 0

0 e−bt − 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 e−bt − 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 e−bt − 1 0 0 1




, b = k1(0),

A3 =




1 0 0 0 0 ect − 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 e−ct − 1 0 0 0 0 0 0
0 0 ect − 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

ect − 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 e−ct − 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 e−ct − 1 0 0 0 0 1




, c = k2(0),

A4 =




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 edt 0 0 0 0 0 0
0 0 0 0 edt 0 0 0 0 0
0 0 0 0 0 edt 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




, d = h(0).
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Then, the Lie-Trotter integrator is given by:




jn+1
1

jn+1
2

jn+1
3

kn+1
1

kn+1
2

kn+1
3

pn+1
1

pn+1
2

pn+1
3

hn+1




= A1A2A3A4




jn1
jn2
jn3
kn1
kn2
kn3
pn1
pn2
pn3
hn




, (6)

i.e.





jn+1
1 = jn1 + edt(−1 + ect)kn3 (t)

jn+1
2 = (−1 + e−bt)(−1 + ect)jn1 + jn2 + (−1 + e−at)jn3 + edt(−1 + e−at)(−1 + e−ct)kn1 +

+edt(−1 + e−at)(−1 + ebt)kn2 + edt(−1 + e−bt)kn3

jn+1
3 = (−1 + eat)(−1 + e−bt)(−1 + ect)jn1 + (−1 + eat)jn2 + jn3 + edt(−1 + e−ct)kn1 +

+edt(−1 + ebt)kn2 + edt(−1 + eat)(−1 + e−bt)kn3

kn+1
1 = (−1 + ect)jn3 + edtkn1

kn+1
2 = (−1 + e−at)(−1 + ect)jn1 + (−1 + e−at)(−1 + e−bt)jn2 + (−1 + ebt)jn3 +

+edt(−1 + ebt)(−1 + e−ct)kn1 + edtkn2 + edt(−1 + e−at)kn3

kn+1
3 = (−1 + ect)jn1 + (−1 + e−bt)jn2 + (−1 + eat)(−1 + ebt)jn3 +

+edt(−1 + eat)(−1 + ebt)(−1 + e−ct)kn1 + edt(−1 + eat)kn2 + edtkn3

pn+1
1 = edt(−1 + e−bt)(−1 + e−ct)kn2 + pn1 + (−1 + e−bt)hn

pn+1
2 = pn2 + (−1 + e−at)pn3 + (−1 + e−ct)hn

pn+1
3 = (−1 + E(at))pn2 + pn3 + (−1 + eat)(−1 + e−ct)hn

hn+1 = edt(−1 + e−ct)kn2 + (−1 + e−bt)pn1 + hn

(7)

Using MATHEMATICA the following can be proven:
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Theorem 4.1 The Lie-Trotter integrator (7) has the following pro-
perties:

(i) It preserves the Poisson structure Π−.

(ii) It preserves the Casimirs C1, C2 of our Poisson configuration (iso(3, 1),Π−).

(iii) It does not preserve the Hamiltonian H of the system (2).
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Abstract

The dynamics of a three-dimensional Hamilton-Poisson system is closely re-
lated to its constants of motion, the energy or Hamiltonian function H and
a Casimir C of the corresponding Lie algebra. The orbits of the system are
included in the intersection of the level sets H = constant and C = constant.
Furthermore, for some three-dimensional Hamilton-Poisson systems, connec-
tions between the associated energy-Casimir mapping (H,C) and some of their
dynamic properties were reported. In order to detect new connections, we con-
struct a Hamilton-Poisson system using two smooth functions as its constants
of motion. The new system has infinitely many Hamilton-Poisson realizations.
We study the stability of the equilibrium points and the existence of periodic or-
bits. Using numerical integration we point out four pairs of heteroclinic orbits.
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1 Introduction

Many systems of first order differential equations that model processes in physics,
chemistry, biology, economy, and other domains are three-dimensional systems.
Some of them have two constants of motion. Consequently, they are Hamilton-
Poisson systems (see, for example [18]). The dynamics of such systems takes place
at the intersection of the common level sets of the Hamiltonian and the Casimir
(see, for example, [8]). In [19], the energy-Casimir mapping EC = (H,C) is intro-
duced. Moreover, some connections between the dynamics of the system considered
in [19] and the associated energy-Casimir mapping were given. In recent papers,
the same connections and new ones were reported (see, for example, [11], [16] and
therein references). These connections depend on the image of the energy-Casimir
mapping. Also they depend on the partition of this image given by the images of the
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equilibrium points through EC. In the most of cases the image of EC is a convex set.
In this paper we add a new example in the list of the systems that are analyzed by
this point of view. We mention here that in our case the image of the energy-Casimir
mapping is a non-convex set.

The paper is organized as follows. In Section 2, we construct a three-dimensional
system of differential equations using two smooth functions as its constants of mo-
tion. One of these constants of motion is a Casimir of the Lie algebra so(3), but
the other one is a non-quadratic polynomial. We recall that quadratic Hamilton-
Poisson systems on the dual space of so(3) were investigated in [1, 2]. In Section
3, using the above-mentioned Lie algebra, we give a Hamilton-Poisson realization
of the considered system. Moreover, we obtain that our system has infinitely many
Hamilton-Poisson realizations. In Section 4, we consider the energy-Casimir map-
ping EC associated to the considered system. Using the images of critical points
of EC we give a semialgebraic partition of the image of this mapping. The connec-
tions of the energy-Casimir mapping with the dynamics of our system are pointed
out in next sections. In Section 5, we prove results regarding the stability of the
equilibrium points. In Section 6, we establish the topology of the fibers of the energy-
Casimir mapping. We prove the existence of the periodic orbits. Using numerical
simulations, we also claim the existence of heteroclinic orbits.

2 A construction of an integrable three-dimensional
system

In this section we construct a three-dimensional system of differential equations
using two smooth functions as its constants of motion.

Let H and C be two smooth functions given by

H(x, y, z) =
1

4
x4 +

1

4
y4 − 1

2
z2 , C(x, y, z) =

1

2
x2 +

1

2
y2 +

1

2
z2. (1)

Consider x, y, z ∈ C1(R) such that

H(x(t), y(t), z(t)) = H(x(0), y(0), z(0))

C(x(t), y(t), z(t)) = C(x(0), y(0), z(0)) , ∀t ∈ R.

Then
dH

dt
= 0 ,

dC

dt
= 0,

that is

∂H

∂x
ẋ+

∂H

∂y
ẏ = −∂H

∂z
ż

∂C

∂x
ẋ+

∂C

∂y
ẏ = −∂C

∂z
ż.
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In our case we have

x3ẋ+ y3ẏ = zż

xẋ+ yẏ = −zż.

Setting
ż = x3y − xy3,

we get the following system





ẋ = yz(1 + y2)
ẏ = −xz(1 + x2)
ż = xy(x2 − y2)

(2)

It is obvious that H and C are constants of motion of system (2). Moreover, this
system is integrable and, in fact, it is a Hamilton-Poisson system.

3 Hamilton-Poisson realizations

In this section we give Hamilton-Poisson realizations of system (2). We obtain
that the considered system is bi-Hamiltonian and in addition it has infinitely many
Hamilton-Poisson realizations.

Proposition 3.1. The system (2) has the Hamilton-Poisson realization

(so(3)∗,Π1, H),

where so(3)∗ is the dual space of the Lie algebra so(3), the Hamiltonian function H
is given by (1) and the Poisson structure is given by

Π1 =




0 z −y
−z 0 x
y −x 0


 . (3)

Proof. It is known that the function C given by (1) is a Casimir of the Lie algebra
so(3) (see, e.g. [1]), where

so(3) = {X =




0 −w v
w 0 −u
−v u 0


 : u, v, w ∈ R}.

We immediately obtain Π1 · ∇C = 0 and Π1 · ∇H = ẋt, x = (x, y, z).

Proposition 3.2. The system (2) is a bi-Hamiltonian system.
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Proof. Considering the second Poisson structure

Π2 =




0 z y3

−z 0 −x3
−y3 x3 0


 , (4)

it follows that system (2) has the Hamilton-Poisson realization (R3,Π2, C), where
C is given by (1). Furthermore the function H (1) fulfills Π2 · ∇H = 0.

Because Π1 · ∇H = Π2 · ∇C = ẋt and Π1 and Π2 are compatible Poisson struc-
tures, the conclusion follows.

Using the above results, we obtain the Poisson structure Πa,b = aΠ1 − bΠ2,
a, b ∈ R. Consider c, d ∈ R such that ad−bc = 1 andHc,d = cC+dH, Ca,b = aC+bH.
We have Πa,b · ∇Hc,d = ẋt and Πa,b · ∇Ca,b = 0. Therefore we have proven the next
result.

Proposition 3.3. There exist infinitely many Hamilton-Poisson realizations of sys-
tem (2), namely (R3,Πa,b, Hc,d), where

Πa,b =




0 (a− b)z −ay + by3

(b− a)z 0 ax− bx3
ay − by3 −ax+ bx3 0


 ,

and

Hc,d(x, y, z) =
d

4
(x4 + y4) +

c

2
(x2 + y2) +

c− d
2

z2,

for every a, b, c, d ∈ R such that ad− bc = 1.

4 Energy-Casimir mapping

In the geometric frame given by Proposition 3.1, in this section we study some
properties of the energy-Casimir mapping EC associated to system (2). We present
the image of this mapping. In addition, using the critical points of EC we obtain
a partition of the image of the energy-Casimir mapping. This partition gives some
connections with the dynamics of the considered system.

Consider the Hamiltonian H and a Casimir function C given by (1). The energy-
Casimir mapping is given below

EC : R3 → R2 , EC(x, y, z) =

(
1

4
x4 +

1

4
y4 − 1

2
z2,

1

2
x2 +

1

2
y2 +

1

2
z2
)
. (5)

The image of the energy-Casimir mapping is the set

Im(EC) =
{

(h, c) ∈ R2|(∃)(x, y, z) ∈ R3 : EC(x, y, z) = (h, c)
}
.
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Proposition 4.1. Let EC be the energy-Casimir mapping (5) associated to system
(2). Then

Im(EC) = {(h, c) ∈ R2|c ≥ −h, c ≥
√
h}. (6)

Proof. The pair (h, c) belongs to Im(EC) if and only if the system

1

4
x4 +

1

4
y4 − 1

2
z2 = h ,

1

2
x2 +

1

2
y2 +

1

2
z2 = c

is compatible. Performing algebraic computations, we get the conclusion.

Remark 4.2. The energy-Casimir mappings of some particular Hamilton-Poisson
systems were studied in many papers. In some cases the image of EC is R2 [6, 20],
in other cases it is a closed convex subset of R2 [7, 9, 10, 11, 12, 13, 14, 15, 19].
In [16] Im(EC) is not a closed set. In our case the image of the considered energy-
Casimir mapping is shown in Figure 1. It is a closed non-convex set, what explains
while we choose those constants of motion given by (1).

ImHECL

c

h0

Figure 1: The image of the energy-Casimir mapping.

A point (x0, y0, z0) ∈ R3 is a critical point of the energy-Casimir mapping if the
rank of the Jacobian matrix of EC at this point is less than 2.

Proposition 4.3. The critical points of the energy-Casimir mapping (5) are given
by the following families

E1(M, 0, 0), E2(0,M, 0), E3(0, 0,M), E4(M,M, 0), E5(M,−M, 0),M ∈ R. (7)

Proof. We have

DEC(x, y, z) =

[
DH(x, y, z)
DC(x, y, z)

]
=

[
x3 y3 −z
x y z

]
.

Imposing the condition rankDEC < 2, the conclusion follows.
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Now we determine the images of these critical points through the energy-Casimir
mapping. We have

EC(E1) = EC(E2) =

(
1

4
M4,

1

2
M2

)
= (h, c) , c =

√
h , h ≥ 0,

EC(E3) =

(
−1

2
M2,

1

2
M2

)
= (h, c) , c = −h , h ≤ 0,

EC(E4) = EC(E5) =

(
1

2
M4,M2

)
= (h, c) , c =

√
2h , h ≥ 0.

The images through the energy-Casimir mapping of its critical points are given by
the curves (see Figure 2)

Σs
1,2 = {(h, c) : c =

√
h , h ≥ 0},

Σs
3 = {(h, c) : c = −h , h ≤ 0},

Σu
4,5 = {(h, c) : c =

√
2h , h > 0}.

We also consider the sets

Σ1
p = {(h, c) :

√
h < c <

√
2h , h > 0},

Σ2
p = {(h, c) : c > −h , h < 0} ∪ {(h, c) : c >

√
2h , h > 0}.

Remark 4.4. The images of the critical points through the energy-Casimir mapping
lead to the following partition of the image of the energy-Casimir mapping

Im(EC) = Σs
1,2 ∪ Σ1

p ∪ Σu
4,5 ∪ Σ2

p ∪ Σs
3. (8)

Note that there is only one bifurcation point in this partition, namely (0, 0).

As it has been reported in the above-mentioned papers (Remark 4.2), there are
some connections between the partition of the image of the energy-Casimir mapping
and the dynamics of the corresponding system. More precisely, in the case when
Im(EC) is a proper convex subset of R2 its boundary is the union of the images
of the nonlinearly stable equilibrium points through EC. Moreover, if a curve that
gives the partition and belongs to the interior of Im(EC) do not have bifurcation
points, then it is given by the images of the unstable equilibrium points through
EC. Furthermore, if such a curve is an arc of parabola, then homoclinic orbits were
computed. In addition, the open subsets Σp of Im(EC) are related to periodic orbits.

In our case Im(EC) is a non-convex set. Therefore it is natural to ask whether
these properties remain true, namely the critical points E1, E2, E3 are stable equi-
librium points and E4, E5 are unstable, and also there are periodic orbits in the
considered dynamics. Moreover, are there homoclinic orbits?

In next sections we give answers to these questions.
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Figure 2: The semialgebraic partition of the image of the energy-Casimir mapping
given by the critical points.

5 Stability

In this section we study the stability of the equilibrium points of system (2). We
use Arnold stability test [3], Lyapunov functions, and First Lyapunov’s Stability
Criterion [17].

It is easy to see that system (2) takes the form ẋ = ∇H × ∇C, x = (x, y, z).
Therefore the equilibrium points of system (2) are in fact the critical points (7) of
the energy-Casimir mapping (5).

In the next proposition we give the results regarding the stability of the equilib-
rium points

E1(M, 0, 0), E2(0,M, 0), E3(0, 0,M), E4(M,M, 0), E5(M,−M, 0),M ∈ R.

Proposition 5.1. a) The points E1, E2, E3 are nonlinearly stable equilibrium points
for every M ∈ R.
b) The equilibrium points E4, E5 are unstable for every M ∈ R,M 6= 0.

Proof. a) Let M ∈ R,M 6= 0 and the equilibrium point E1(M, 0, 0). We consider
the function F = H+λC. The condition ∇F (M, 0, 0) = 0 leads to λ = −M2. Using
the fact that dC(M, 0, 0) = 0, we obtain d2F (M, 0, 0) = −M2dy2 − (M2 + 1)dz2

that is negative definite. By Arnold stability test we deduce that the equilibrium
point E1 is nonlinearly stable. We analogously proceed for the equilibrium points
E2 and E3.

If M = 0, then all the equilibrium points coincide. In this case the Casimir
C(x, y, z) = 1

2x
2 + 1

2y
2 + 1

2z
2 is a Lyapunov function for the equilibrium point

(0, 0, 0) and dC
dt = 0. Therefore the equilibrium point (0, 0, 0) is nonlinearly stable.
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b) Let J(x, y, z) be the matrix of linear part of system (2), that is

J(x, y, z) =




0 3y2z + z y3 + y
−3x2z − z 0 −x3 − x
3x2y − y3 x3 − 3xy2 0


 .

The characteristic roots of J(E4) and J(E5) are given by

λ1 = 0, λ2,3 = ±2M2
√
M2 + 1.

Therefore, for every M ∈ R,M 6= 0 there is a positive eigenvalue and consequently
the equilibrium points E4 and E5 are unstable.

Remark 5.2. The images of the nonlinearly stable equilibrium points through the
energy-Casimir mapping are the curves Σs

1,2 and Σs
3, where the superscript “s” means

stable, as in above-mentioned papers. Moreover, the set Σu
4,5 is the image of the

unstable equilibrium points through EC.

6 Fibers of the energy-Casimir mapping

The fiber of the energy-Casimir mapping EC corresponding to an element (h0, c0) ∈
Im(EC) is the set

F(h0,c0) =
{

(x, y, z) ∈ R3 | EC(x, y, z) = (h0, c0)
}
. (9)

The implicit equation of the above fiber is given by

F(h0,c0) :

{
H(x, y, z) = h0

C(x, y, z) = c0 .
(10)

On the other hand the dynamics of the considered system takes place at the inter-
section of the level sets H(x, y, z) = constant, C(x, y, z) = constant. Therefore an
orbit of the our system is given implicitly by the above fiber.

Taking into account the partition (8) of Im(EC), in this section we point out the
topology of the fibers of energy-Casimir mapping (5). We prove the existence of the
periodic orbits. Using numerical integration, we emphasize a possible existence of
some heteroclinic cycles.

Let M > 0. Fixing c = c0 > 0 and varying h such that −c0 ≤ h ≤ c20, the
straight-line of equation c = c0 intersects all the sets of the partition (8) of the im-
age of the energy-Casimir mapping. The intersections of the level sets H(x, y, z) = h
and C(x, y, z) = c0 when (h, c0) belongs to Σs

1,2, Σ1
p, Σu

4,5, Σ2
p, and Σs

3 are presented
in Figure 3 (a), (b), (c), (d)-(e), and (f) respectively. We notice that around the
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equilibrium points E1(±M, 0, 0) and E2(0,±M, 0) (Figure 3 (a)) there are four fam-
ilies of periodic orbits (Figure 3 (b)) which collide (Figure 3 (c)) when h decreases
and takes the value 1

2c
2
0. Four orbits are obtained and they are contained in the

intersection of the level sets H(x, y, z) = h and C(x, y, z) = c0, where (h, c0) ∈ Σu
4,5.

Also, in this case, the fiber F(h,c) contains the unstable equilibrium points E4 and E5.
Afterwards these orbits split in two families of periodic orbits around E3(0, 0,±M)
(Figure 3 (d),(e)) which tend to E3 as h→ −c0 (Figure 3 (f)). Therefore we deduce
that apparently the above-mentioned four orbits are heteroclinic orbits.

(a) (h, c) ∈ Σs
1,2 (b) (h, c) ∈ Σ1

p (c) (h, c) ∈ Σu
4,5

(d) (h, c) ∈ Σ2
p, h ≥ 0 (e) (h, c) ∈ Σ2

p, h < 0 (f) (h, c) ∈ Σs
3

Figure 3: Intersections of the level sets H(x, y, z) = h and C(x, y, z) = c, namely
(a) and (f): stable equilibrium points; (b),(d),(e): periodic orbits; (c): heteroclinic
orbits.

We begin our study with the pairs (h, c) that belong to the boundary of Im(EC).

Proposition 6.1. Let (h, c) ∈ Σs
1,2∪Σs

3. Then the corresponding fiber contains only
nonlinear stable equilibrium points, namely:
a) If (h, c) ∈ Σs

1,2, then F(h,c) = {(±
√

2c, 0, 0)} ∪ {(0,±
√

2c, 0)} (Figure 3 (a));
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b) If (h, c) ∈ Σs
3, then F(h,c) = {(0, 0,±

√
2c)} (Figure 3 (f));

c) If (h, c) ∈ Σs
1,2 ∩ Σs

3, then F(h,c) = {(0, 0, 0)}.

Proof. a) By hypothesis, c =
√
h. Using (9) and (1), we obtain

z2(z2 + 2 + 2x2 + 2y2) + 2x2y2 = 0.

Hence z = 0 and xy = 0. Therefore the conclusion follows.
Analogously we prove b) and c).

We study the others cases in the next subsections.

6.1 Periodic orbits

Let (h, c) ∈ Σ1
p∪Σ2

p, where Σ1
p and Σ2

p are given by (8). The intersection of the level
sets H(x, y, z) = h and C(x, y, z) = c suggests the existence of the periodic orbits
(see Figure 3 (b),(d),(e)). We prove the existence of these periodic orbits around
the nonlinear stable equilibrium points using a version of Moser’s theorem in the
case of zero eigenvalue [5].

Proposition 6.2. Let E1 = (M, 0, 0) be a nonlinear stable equilibrium point of
system (2) such that M ∈ R∗. Then for each sufficiently small ε ∈ R∗+, any integral
surface

ΣE1
ε : − 1

4
(x4 + y4) +

M2

2
(x2 + y2) +

M2 + 1

2
z2 − 1

4
M4 = ε2

contains at least one periodic orbit γE1
ε of system (2) whose period is close to

2π
M2
√
M2+1

.

Proof. We apply Theorem 2.1 from [5].
The characteristic polynomial associated with the linearization of system (2)

at E1 has the eigenvalues λ1 = 0 and λ2,3 = ±iM2
√
M2 + 1. Furthermore, the

eigenspace corresponding to the eigenvalue zero is spanR {(1, 0, 0)}. The constant of
motion of system (2) given by

I(x, y, z) = −1

4
(x4 + y4) +

M2

2
(x2 + y2 + z2)

has the properties: dI(M, 0, 0) = 0 and d2I (M, 0, 0)
∣∣
W×W = M2dy2+(M2+1)dz2 >

0, where W = ker dC (M, 0, 0) = spanR {(0, 1, 0), (0, 0, 1)} .
Therefore the conclusion follows via Theorem 2.1 [5].

We obtain the same result for E2. Analogously we get the next result.
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Proposition 6.3. Let E3 = (0, 0,M) be a nonlinear stable equilibrium point of
system (2) such that M ∈ R∗. Then for each sufficiently small ε ∈ R∗+, any integral
surface

ΣE1
ε :

1

4
(x4 + y4) +

1

2
(x2 + y2) = ε2

contains at least one periodic orbit γE3
ε of system (2) whose period is close to 2π

|M | .

6.2 Numerical integration. Heteroclinic orbits

Consider (h, c) ∈ Σu
4,5, that is h > 0 and c =

√
2h. The fiber F(h,c) contains the

unstable equilibrium points E4 and E5. Its implicit equation is given by

1

4
x4 +

1

4
y4 − 1

2
z2 =

c2

2
,

1

2
x2 +

1

2
y2 +

1

2
z2 = c. (11)

The intersection of the above level sets is shown in Figure 3 (c) and it suggests the
existence of four pair of heteroclinic orbits that connect the unstable equilibrium
points E4(±

√
c,±√c, 0) and E5(±

√
c,∓√c, 0).

We recall that a heteroclinic orbit HE : R→ R3 is a solution (x(t), y(t), z(t)) of
the considered system that connects two unstable equilibrium points e1 and e2 of the
system, that is HE(t) := (x(t), y(t), z(t)) and HE(t) → e1 as t → −∞, HE(t) → e2
as t→∞.

We give the numerical simulation of these heteroclinic orbits applying the mid-
point rule (see [4] and references therein) to system (2).

Consider the Hamilton-Poisson realization of system (2) given by Proposition
3.1:

ẋ = Π1(x)∇H(x) , x = (x, y, z)t,

where Π1 is the Poisson structure (3) and H is the Hamiltonian function. The
mid-point rule is given by the following implicit recursion [4]

xk+1 − xk
∆t

= Π1

(
xk + xk+1

2

)
∇H

(
xk + xk+1

2

)
,

where ∆t is the time-step. “If Π(x) is linear in x, then the mid-point rule is an almost
Poisson integrator, that is it preserve the Poisson structure up to second order” [4].
Furthermore, “the mid-point rule preserves exactly any conserved quantity having
only linear and quadratic terms” [4].

The integrator for system (2) is given by

xk+1 − xk
∆t

=
1

16
(yk + yk+1)(zk + zk+1)(4 + (yk + yk+1)

2)

yk+1 − yk
∆t

= − 1

16
(xk + xk+1)(zk + zk+1)(4 + (xk + xk+1)

2) (12)

zk+1 − zk
∆t

=
1

16
(xk + xk+1)(yk + yk+1)((xk + xk+1)

2 − (yk + yk+1)
2)
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Remark 6.4. Because the Poisson bracket (3) is linear, the mid-point rule of system
(2) given by (12) is an almost Poisson integrator. Moreover, the Casimir C (1) is
quadratic, hence it is preserved by this integrator.

We implemented algorithm (12) in Wolfram MathematicaTM .

First, we fix h = 0.5, c =
√

2h = 1, and z1 = 0.5 and compute x1, y1 such
that H(x1, y1, z1) = h and C(x1, y1, z1) = c. We find eight solutions and we take
x1 = 1.25338 and y1 = 0.42312. Choosing the time-step ∆t = 0.015, after 160
iterations we get the point (1.00305,−0.996944, 0.00128394) which is closer to the
unstable equilibrium point E5(1,−1, 0). To simulate the behavior of the orbit when
t decreases to −∞, we consider the same initial point (x1, y1, z1) and ∆t = −0.015.
After 160 iterations we get the point (1.00438, 0.995591,−0.00465251) which is closer
to the unstable equilibrium point E4(1, 1, 0). The discrete orbit is shown in Figure
4 (a). We remark that the points (xk, yk, zk) are very close near the both unstable
equilibrium points. Analogously we obtain a second orbit that connects the points
E4(1, 1, 0) and E5(1,−1, 0) (Figure 4 (b)).

1.0
1.1

1.2

x

-1.0
-0.5

0.0
0.5

1.0y

0.0

0.2

0.4

0.6
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1.0
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1.2

x

-1.0
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0.0

0.5

z
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Figure 4: Numerical simulation of heteroclinic orbits: (a) an orbit; (b) a pair of
orbits.

In Figure 5 the obtained pair of orbits is shown together with the intersection of
the level sets H(x, y, z) = 1

2 and C(x, y, z) = 1 which correspond to the equilibrium
points E4(1, 1, 0), E5(1,−1, 0). We notice a very well superposition of these curves.

In the same manner we obtain the others “heteroclinic” orbits (Figure 6 (a)).
They arise naturally taking into account the symmetries of system (2) given by
the transformations (x, y, z) → (−x,−y, z), (x, y, z) → (−x, y,−z), (x, y, z) →
(x,−y,−z), (x, y, z) → (−y, x, z), (x, y, z) → (y,−x, z). We also remark that the
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Figure 5: A pair of heteroclinic orbits and the intersection of the level sets H = c2/2,
C = c.

unstable equilibrium points E4(1, 1, 0), E5(−1, 1, 0), E4(−1,−1, 0), and E5(1,−1, 0)
are connected by two cycles of “heteroclinic” orbits. Such a cycle is shown in Figure
6 (b).
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Figure 6: Numerical simulation of heteroclinic orbits: (a) four pairs of orbits; (b) a
cycle of orbits.
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Abstract

In this paper are presented: structure of the bone tissue, anisotropic linear-
elastic models of cortical bone and Analysis numerical propagation of a cracks
into the cortical bone. To determine the fracture mechanics parameters at the
crack tip, the finite element method was implemented in the FRANC2D / L
1.5 software. 1

Keywords and phrases: cortical bone, anisotropic, FRANC2D / L

1 The structure of the bone tissue

The tissue has a complex hierarchical structure (Figure 1) which, due to its
reduced density, results in a unique combination of properties: high strength and
toughness, good stiffness, absorption capacity of deformation energy, Taylor (2010).

Also, this complex structure allows the bone tissue to perform important me-
chanical, biological and chemical functions, Sabet(2018):
• The structural support, ensuring body shape and weight support;
• It forms cavities for the protection of internal organs (the cranial box, thorax box,
vertebral canal, etc.);
• Mineral ion homeostasis, bone tissue depositing 99% of the total Ca2+ in the
body, 85% of the total phosphorus and 66% of the total magnesium);
• The spongy tissue of the epiphyses hosts the hematopoietic tissue (red marrow);
• The regenerative function that provides bone remodeling, healing of cracks and
fractures. Bone tissue is divided into two broad categories, namely, compact bone
tissue (osul cortical) and spongy bone (trabecular bone), see Figure 1. The compact
bone tissue, accounting for 80% of the bone mass, represents a dense structure that
contributes to strength and rigidity of the bone. It is located in the diaphysis of
the long bones and in the cortical bones. Spongy bone tissue forms a less dense
structure and is located in the central area of short bones, epiphyses of long bones

1MSC (2010): 74R99
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and diploid bones. It is responsible for the absorption of deformation energy and
the distribution of forces in the body. At the nanometric scale, collagen molecules
and apatite crystals constitute collagen mineralized with a diameter of about 100
nm and a length of several µm, Sabet (2016), see Figure 1.

Figure 1:

These mineralized fibers, placed parallel to each other, form sub-micrometric
scaffolds with a thickness of 3-7 µm, called lamellas. On a micrometric scale, the
assembling of the lamellae leads to the formation of a number of tissues, the compact
bone and the spongios. Compact (cortical) structure, approximately 4-20 lamels,
not concentrically disposed around a vascular channel (haversian canal) forming the
osteon, 200-300 µm in diameter a few mm. Between the osteons is the interstitial
tissue, formed by remnants of the aged osteoarthritis, resulting from the bone re-
modeling process. Separation is provided by a cement line containing less collagen
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(mesoscopic scale, see Figure 2).

Figure 2:

In the structure of the spongy trabecular bone, the lamelele are assembled into
branched trabecular forming a network that delimits areolele of different shapes
and sizes. Areas contain connective tissue, blood vessels, nerve endings, and bone
marrow. Thus, on a mesoscopic scale results a cellular structure illustrated in Figure
3. On a macroscopic scale the bone contains both compact tissue and spongy tissue.

Figure 3:

The composition of the human bone depends on a large number of factors: sex,
age, type of tissue, site of sampling, Katz (2008). Thus, bone tissue is thought
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to contain 32 − 44% organic substance (mainly collagen), 33 − 43% minerals (as
hydroxyapatite) and 15− 25% water, Sabet. (2016).

2 Anisotropic linear-elastic models of cortical bone

Although in reality bone-elastic tissue exhibits visco-elastic behavior, both in
mechanical tests at low velocities and in the numerical analysis of stress and defor-
mation state, it is considered, in an acceptable approximation, an anisotropic solid
with a linear-elastic behavior, Katz (2008).

2.1 Tensions and deformations

The state of tension is known at a point P of a solid if the voltages that act on
three orthogonal planes that pass through this point are known. In Figure 4, these
are represented by even the coordinate planes of the orthogonal Cartesian system
x1x2x3.

Figure 4: The state of tension at a point of a required solid

In other words, the voltage state at point P is defined by the voltage tensor with,
a second-order tensor that can be represented by the array of:

σ = [σ] =



σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33




(1)

where the tensions are normal tensions, and tensions are shear stresses (or tensile
stresses). Tensions on the lines of this array act in the planes on which the coordinate
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axes are normal. From the equilibrium conditions of the volume element illustrated
in Figure 4 it is demonstrated that the voltage tensor is a symmetric tensor (i.e.):

σ =



σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33


 =



σ1 σ6 σ5
σ6 σ2 σ4
σ5 σ4 σ3




(2)

In relation (2) the notation contraction is used, by the rule:

α = i,pentrui = j;α = 9− i− j,pentrui 6= j

(3)

The contraction of the notation defined by the rule (3) makes it possible to
represent the voltage tensor through the matrix of the column:

{σ} =





σ1
σ2
σ3
σ4
σ5
σ6





(4)

A certain point P of the solid required will move to P ′, the travel vector (a first-
order tensor) being defined by the three components according to the coordinate
axes:

u = ui = (u1, u2, u3), i = 1, 2, 3

(5)

In order to study the state of deformation of a solid-called Lagrange strain Ensor
T is defined:

Lij =
1

2
(ui,j + uj,i + uk,iuk,j)

(5)

where is the deformation gradient, Sadd (2014):

ui,j =
∂ui
∂xj
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(6)

In the field of small deformations, ie, the second order term is neglected, and the
deformation tensor it is:

ε = εij =
1

2
(ui,j + uj,i)

(7)

Specific linear deformations (or specific lenghts for) expressing elongation per
unit of length:

ε11 =
∂u1
∂x1

= ε1; ε22 =
∂u2
∂x2

= ε2; ε33 =
∂u3
∂x3

= ε3

(8)

and specific angular deformations (or specific glides for) measures the change of
right angles between two orthogonal directions:

2ε12 = 2ε21 =

(
∂u1
∂x2

+
∂u2
∂x1

)
= ε6;

2ε23 = 2ε32 =

(
∂u2
∂x3

+
∂u3
∂x2

)
ε4;

2ε31 = 2ε13 =

(
∂u3
∂x1

+
∂u1
∂x3

)
= ε5.

(9)

In the relations (8) and (9) the same notation shrinkage was used. The defor-
mation tensor is a symmetric tensor of the second order that can be represented in
the matrix form:

ε = [ε]



ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33


 =



ε1

ε6
2

ε5
2

ε6
2 ε2

ε4
2

ε5
2

ε4
2 ε3




(10)

Geometric representation of deformations in the plane is illustrated in Figure 5,
the approach being similar in the coordinate planes and x2x3 and x3x1.



Some properties of cortical bones 35

Figure 5: Deformation state

The connection between the voltage tensor and the deformation tensor is achieved
with the aid of the elasticity tensor which contain our parameters of material:

σ = Cε

(11)

or

σij = Cijklεkl

(12)

Therefore,for a material with linear-elastic behavior, the writing of the constitu-
tive equations (Hooke’s law) is based on the hypothesis that each component of the
voltage tensor is expressed by a linear combination of all the components of the de-
formation tensor. Tensor elasticity is a tensor of order 4 which contains, in general,
81 components ( ). Because voltage and strain tensors are symmetrical tensors:

σij = σji, εij = εji,

(13)

tensor elasticity meets conditions, Barbero (2008) and Saddam (2014):

Cijkl = Cjikl = Cijlk = Cjilk

(14)
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Thus, the number of independent components decreases from 81 to 36, and the
elasticity tensor can be represented by a matrix, the constitutive equations (12)
becoming in the matrix form, by the contraction of the notation:





σ1
σ2
σ3
σ4
σ5
σ6





=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66








ε1
ε2
ε3
ε4
ε5
ε6





(15)

where are coefficients of elasticity, Boresi et al. (1993). Explaining the components
of the stress tensor by the specific deformation energy derivatives according to the
components of the deformation tensor, it is demonstrated that the number of inde-
pendent elastic coefficients is reduced from 36 to 21 for a linear-elastic anisotropic
material, Boresi et al. (1993). Thus, the constitutive equations (15), in the matrix
form, become:





σ1
σ2
σ3
σ4
σ5
σ6





=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66








ε1
ε2
ε3
ε4
ε5
ε6





(16)

resulting in the elasticity matrix is symmetrical. Hooke’s law (16) is often expressed
using the matrix of compliance, which is the reverse matrix of elasticity, Barbero
(2008): 




ε1
ε2
ε3
ε4
ε5
ε6





=




S11 C12 S13 C14 S15 C16

S21 C22 S23 C24 S25 C26

S31 C32 S33 C34 S35 C36

S41 C42 S43 C44 S45 C46

S51 C52 S53 C54 S55 C56

S61 C62 S63 C64 S65 C66








σ1
σ2
σ3
σ4
σ5
σ6





(17)
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3 The linear elastic orthotropic and that of cortical bone

A material with three mutually orthogonal planes of symmetry and that are
called orthotropic. The most well-known examples are wood with cylindrical or-
thotropy and unidirectional fiber composites with a Cartesian ortho- pie, Barbero
(2008). The model of the ortotropic material was used by Van Buskirk and Ash-
man (1981) to characterize the anisotropy of the cortical tissue. Their suggestion is
based on experimental observations that the elastic properties of the tibia and hu-
man femur are different in the radial and circumferential directions of the transversal
section (normal on the longitudinal axis of the bone). Conveniently, in Fig. 6 the
coordinate planes are even the symmetry planes of the material.

Figure 6: The planes of symmetry for an orthotropic material acid, Sadd (2014)

From the condition of symmetry to plan it follows that the following coefficients
of elasticity are canceled, Barbero (2008) and Sadd (2014):

Ci4 = Ci5 = C46 = C56 = 0 (i = 1, 2, 3)

(18)

Symmetry towards the plan leads to the following condition:

C16 = C26 = C36 = C45 = 0

(19)

and the symmetry towards the plan is the result of the other two, without making
any further changes to the elastic matrix.
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Therefore, in the case of an orthoprophoric matrix the elasticity matrix will
have 9 independent coefficients that characterize the behavior of such material. The
constituent equations (16) and (17) in the matrix form are simplified as follows:





σ1
σ2
σ3
σ4
σ5
σ6





=




C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66








ε1
ε2
ε3
ε4
ε5
ε6





(20)

respectively 



σ1
σ2
σ3
σ4
σ5
σ6





=




S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66








ε1
ε2
ε3
ε4
ε5
ε6





(21)

Matrix of Compliance was first deployed using the elastic properties of the ex-
perimentally determined material, as follows:

[S] =




1
E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1
E2

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12




(22)

In (22) represents the longitudinal modulus of elasticity in the direction the
symmetry of the material, is the coefficient of transverse contraction (Poisson’s co-
efficient) defined as the ratio of specific lenghts when applying normal tension , and
is the transverse elastic modulus in the plane. An ortotropic material is character-
ized by a set of 9 independent elastic constants, out of a total of 12, due to the
symmetry of the tensor, ie we have the following relationships fulfilled:

ν12
E1

=
ν21
E2

,
ν13
E1

=
ν31
E3

,
ν23
E2

=
ν32
E3
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(23)

Also, the coefficients of the elastic matrix can be expressed by the elastic con-
stants of the material, taking into account the relationship. Thus, Christmas, etc.
(2018):

C11 =
1− ν23ν32
E2E3∆

, C12 =
ν21 + ν31ν23
E2E3∆

=
ν12 + ν32ν13
E1E3∆

C13 =
ν31 + ν21ν32
E2E3∆

=
ν13 + ν12ν23
E1E2∆

, C22 =
1− ν13ν31
E1E3∆

C23 =
ν32 + ν12ν31
E1E3∆

=
ν23 + ν21ν13
E1E2∆

, C33 =
1− ν12ν21
E1E2∆

C44 = G23, C55 = G13, C66 = G12

(24)

where

∆ =
1− ν12ν21 − ν23ν32 − ν31ν13 − ν21ν32ν13 − ν12ν23ν31

E1E2E3

(25)

Relationships (23) and (25) represent restrictions that experimentally determined
elastic properties have to meet. Also, from (24) and (23) the restriction follows:

1− νijνji > 0, 0 < νij <

√
Ei
Ej

(i, j = 1, 2, 3; i 6= j)

(26)

4 The isotropic cross-sectional arthroplasty
of the cortical bone

The transverse-isotropic material has an axis of symmetry, and consequently the
planes containing this axis are symmetry planes (see Figure 7, the symmetry axis
is). The transversal-isotropic model was used by Lang (1969), Katz and Ukraincik
(1971) and Yoon and Katz (1976) to characterize cortical bone anisotropy.
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Figure 7: Symmetry axis for a transverse-isotropic material, Sadd (2014)

A transversal-isotropic material is characterized by a set of 5 independent elastic
constants with the elastic matrix:




C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0

0 0 0 0 0 C11−C12
2




(27)

and relationships between elastic properties, Katz (2008):

E1 = E2, ν12 = ν21, G12 =
E1

2(1 + ν12)

ν31 = ν32 = ν13 = ν23, G23 = G31

(28)

5 Analysis numerical propagation of a cracks
into the cortical bone (how mixed I-II)

The method of the finite element (MEF) is used into the biomechanics for The
study TAD’s behavior Mechanical Tissue bone, and examples are numerous: analysis
st country voltage of femur human, Basuşa (1985 ); prediction breaking bone fem,
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ral, Marco et al . (2018); estimate property mechanical of the vertebral bone, Brown
et al. (2014); micrometric scale modeling of cortical bone breakage, Idkaidek and
Jasiuk (2016), Li et al. (2013).

The conditions for starting the break cortical bone, for call into the module
mixed I-II, is studied numeral into the continuation on The bending specimens NTI
symmetric into the four points (AFPB - Asymmetric Four Point Bendspecimen )

5.1 Geometry of the AFPB specimen

The AFPB test was used in the mixed I-II breakdown study for ceramic materi-
als, Suresh et al. (1990), granite, Razavi et al. (2017), alumina-PMMA, Marsavina,
and others. (2013) or cortical bone, Zimmermann et al. (2009).

Geometry of the AFPB specimen and how to apply for the pattern used in this
study are presented into the Figure 8, with thickness.

Figure 8: The AFPB test

Force is applied at a distance to the crack length (see Figure 8). Thus, the
request into this plan (rift) is bending with force cutting efforts calculating with the
relationships:

T = F
L2 − L1

L
, M(s) = Ts

(29)

Into the case, the crack is produced only shear pure, obtaining a request in Mode
II. Changing distance of the direction of force action and the crack plane, that is,
for, is achieved applications into the module. C mixed ombi nation from Modules I
and II are characterized through parameter to dimensional:

M e =
2

π
arctan

(
k1
k11

)
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(30)

The relationship (30), and the voltage for mode are the factors of intensity I of
the request, so mode II, expressions of the form, Suresh et al. (1990)

K1 = ς
√
πaY1(a/W ) =

6M

W 2t

√
πaY1(a/W ) = 6τ

s

W

√
πaY1(a/W )

Kll = τ
√
πaY1(a/W )

(31)

Some functions depend on the report. Into the configuration, we have obtained
superior values to about the results published by Suresh and others. (1990). Ten-
sions and are produced by the bending and shearing requirements in the crack plane.

Mode I application ( ) is not obtained in antisymmetric configuration your pres-
ence into the Figure 8 because for any parameter value. Throughout, in the skeleton,
a symmetric configuration is involved and i, for the epoch in the study.

Figure 9: The variation of the M parameter is based on the position of the crack
plane

Figure 9 is presented combination from Module I and Module II, in depending
on the report, for:

5.2 Numerical Determination of Breaking Mechanics Parameters

To determine the fracture mechanics parameters at the crack tip, the finite ele-
ment method was implemented in the FRANC2D / L 1.5 software developed at Cor-
nell University, Wawrzynek (1991). Two types of isotropic and transverse isotropic
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materials were studied comparatively. The working steps are further described for
the AFPB sample shown in Figure 8.

The geometric modeling and meshing is performed with the CASCA pre-processor.
The specimen geometry is made up of three sub-regions, especially because onvenabil
for meshing (G e ometry menu commands Get Line LinesConnected). To control
meshing parameters, such as number of elements and spacing along one side, the
No. of segments and Ratio commands in the Subdivide menu are used (see Figure
10).

Figure 10: Determining the number of elements and spacing along the sides

Mesh Mesh specimen is carried out by selecting the menu items Q8 and technical
quadratic bilinear 4side type recommended for the rectangular regions of the same
apple nodes not on opposite sides (Figure 11).

Figure 11: Specimen design

After completion meshed country save a CASCA file (e.g. afpb.csc, Write com-
mand) that can change then. Also, further analysis is saved a FRANC2D / L file,
for example afpb.inp (Write Mesh command), file which import computing model.

The calculation of the number of mechanical parameters break with the method
element Efe ctuează program is finished FRANC 2D / L.

Stage Understanding-processing assume the establishment conditions in which
it is settled application: the type of problem, and material properties the limiting
conditions.

Thickness taking account the specimen, equal with it was considered a mat-
ter of state plane stress (Pre-Process menu, submenu Problem Type, Plane Stress
command).

Defined two material is first a behavior isotropic, and the second with a trans-
versely isotropic behavior, properties, and Burstein Reilly (1975) considering speci-
men taken into the over axis The main material (Pre-Process menu, submenu Mate-
rial / New Mat, ElastIso command / ElastOrth), through cancellation travel appro-
priate (Pre-Process menu, submenu fixity, Ind Fix command), and the load applied
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applied applying the specimen (Pre-Process menu, submenu Loads, Load command
Point).

Into the Processing steps and post processing is carried out analyze the stress
and strain (Analysis menu, submenu Linear, Stiff direct command) and the view-
ing Results (Post-Process menu, submenu Contour command Stress / Strain). The
program performs the linear-elastic analysis of the stress state using the direct elim-
ination method (Gauss Removal Method).

Analyze parameters of mechanics breaking for the AFPB sample is being initi-
ated through introduction of a edge cracks, whose sides are unencumbered (Modify
menu, submenu New Crack, Non-Cohesive and EdgeCrack commands). Specify the
edge node leading to the crack, the crack tip and the minimum number of finite
elements on the crack length. At the tip of the crack, the program introduces a
rosette consisting of 8 singular finite elements for modeling singularity, Figure 12.

For that a new one has emerged s STRUCTURE (specimen cracked), is carried
out nine analysis of the state of tension and is calculated mechanical parameters
Breaking: the angle the crack extension and the stress intensity factors and i. The
FRANC2D / L program uses some techniques for calculation of stress intensity
factors: extrapolation displacements, integral, the extension virtual crack. The
method of extrapolation travel was used for evaluation stress intensity factors and in
simulation of crack propagation on AFPB specimens (Post-Process menu, submenu
fraction Mech, DSPCorr SIF / SIF History commands).

Figure 12: Starting the edge crack detail and propagating it in the II mode of
application; isotropic material, increment 0.2 mm, 15 steps

Propagation crack is performed into the FRANC2D / L through standard tech-
nique or through technique automatic . Direction of propagation and the position
new the peak of the crack is determined on the base of three initiation criteria into
the module mixed, and namely: criterion blood circumfer Entiat maximum, crite-
rion energy ie specific deformity minimum, respectively, the criterion ie force and
maximum extension of the crack. After the establishment increment and a dir ECTI
extension FIS hatred finite elements positioned along the path are removed and a
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surface polygonal temporary intended for re-use mesh it is generated . Fissure initial
It is exile nLet into the nine position of the tip and it is brought a rosette consisting
of 8 triangular finite elements isobar a metric singular . Surface in the neighborhood
ii crack it is discretized automatic. Into the Figure 12 is this t the outcome spread
crack for an increment equal to and 15 consecutive steps using automatic technique
(Modify menu, submenus Move Crack / Automatic, the Propagate command).

6 Results and conclusions

Trajectories crack, for the two materials, in Module I and Request Module II
are presented into the Figures 13 and 14. Conditions critical crack extension, as
the critical opening angle, are different for the two materials; same observation
results and Figure 15, where for three stress situations (how I, how mixed I + II
and module II) results number are represented into the compared to the solution
criterion blood circumferential maximum (MTS criterion), Erdogan and Sih (1963).
Validation results number and determination force critical crack extension assume
Tests mechanical on cortical bone.

Also, it is proposed, in studiu a future use the XFEM method , implemented
into the ABAQUS program, for modeling spread cracks into the case materials
anisotrope.

Figure 13: Fracture trajectory for load mode I (left - isotropic material, right -
isotropic cross-sectional material

Figure 14: Fracture trajectory for load mode II (left - isotropic material, right -
isotropic cross-sectional material
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Figure 15: Critical angle of initiation to crack extension
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Abstract

A generalization of classical Young’s inequality for non-convex linear com-
binations is given, followed by applications to functionals. 1
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1 Introduction

William Henry Young published in 1912 an inequality which extends the well known
relation between arithmetic and geometric means. Now, that is called Young’s
inequality:

xαyβ ≤ αx+ βy,

for any x, y ≥ 0 and any positive α, β such that α+ β = 1.

In the last years, Young’s inequality reappeared as a research theme and many
improved inequalities, originated from that, were published by authors as: T. Ando,
F. Kittaneh and Y. Manasrah, M. Tominaga, S. Furuichi, N. Minculete, J. M.
Aldaz, S. S. Dragomir and O Hirzallah, see [2, 13, 14, 5, 10, 9, 11, 17, 1, 8, 7] and
the references therein. T. Ando, O. Hirzallah and F. Kittaneh and Y. Manasrah
used it for matrices and also S. Furuichi and N. Minculete and S. S. Dragomir used
it for operators. Also W. Liao, J. Wu and J. Zhao and S. Manjeani generalized this
inequality in recent years.

As a common feature of these new inequalities is the relation α+ β = 1.

In the followings we are going to state and prove inequalities beyond that con-
dition.

1MSC (2010): 26D15
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2 Generalization of Young’s theorem

Theorem 2.1 (a) In case α+ β > 1, and α ∈ (0, 1), then

αx+ βy > xαyβ,

for all x, y > 0.
(b) In case α+ β = 1, and α, β ≥ 0, then

αx+ βy ≥ xαyβ,

for all x, y ≥ 0.
(c) In case α < 0, β < 0, then

αx+ βy < xαyβ,

for all x, y > 0.

Proof. Let’s find the extremes of the mapping

f(x, y) = αx+ βy − xαyβ,

for x, y > 0, α, β ∈ R∗.
The stationary points of f are given by the system

{
∂f
∂x = α− αxα−1yβ = 0
∂f
∂y = β − βxαyβ−1 = 0 .

That system is equivalent to the following one:

{
xα−1yβ = 1
xαyβ−1 = 1

which gives, by division: y
x = 1, hence x = y, and the unique stationary point

of f is (1, 1). The hessian matrix of f is:

(Hf)(x, y) = −
(
α(α− 1)xα−2yβ αβxα−1yβ−1

αβxα−1yβ−1 β(β − 1)xαyβ−2

)
=

= −xα−2yβ−2

(
α(α− 1)y2 αβxy
αβxy β(β − 1)x2

)
.
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The minor determinants ∆1,∆2, of Sylvester’s theorem, have the same sign as
d1 = −α(α− 1), d2 = −

[
αβ(α− 1)(β − 1)− α2β2

]
= −αβ(1− α− β).

1. The point (1, 1) is a global minimum for f if ∆1, ∆2 > 0, ∀ x, y > 0, that
is d1, d2 > 0 or

{
α(α− 1) < 0
αβ(1− α− β) < 0 .

(1)

1.1 By the first inequality of (1), if α > 0, then α − 1 < 0, α < 1, hence
α ∈ (0, 1). Here, we may have two cases, depending on the second inequality of (1):

1.1.1 If β > 0, then 1− α− β < 0, α+ β > 1, and

f(x, y) ≥ f(1, 1) = α+ β − 1 > 0, ∀ x, y > 0,

hence f(x, y) > 0 or αx+ βy > xαyβ, which is the statement (a).

1.1.2 If β < 0, then 1− α− β > 0, α+ β < 1, and

f(x, y) ≥ f(1, 1) = α+ β − 1 < 0, ∀ x, y > 0.

By that we have no conclusion.

1.2 If α < 0, then α− 1 > 0, α > 1, and that is impossible.

2. The point (1,1) is a global maximum for f if ∆1, ∆2 < 0, ∀ x, y > 0, that
is d1, d2 < 0, or

{
α(α− 1) > 0
αβ(1− α− β) > 0 .

(2)

2.1 If α > 0, then α > 1, hence α > 1.

2.1.1 If β > 0, then 1 − α − β > 0, α + β < 1, but these three conditions are
incompatible.

2.1.2 If β < 0, then 1− α− β < 0, α+ β > 1, and

f(x, y) ≤ f(1, 1) = α+ β − 1 > 0, ∀ x, y > 0,

which gives no conclusion.

2.2 If α < 0, then α− 1 < 0, α < 1, hence it remains that α < 0.

2.2.1 If β > 0, then 1− α− β < 0, α+ β > 1, and

f(x, y) ≤ f(1, 1) = α+ β − 1 > 0, ∀ x, y > 0,
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and we have no conclusion.

2.2.2 If β < 0, then 1− α− β > 0, α+ β < 1, and

f(x, y) ≤ f(1, 1) = α+ β − 1 < 0, ∀ x, y > 0,

hence f(x, y) < 0, ∀ x, y > 0, which is equivalent to the statement (c). The
statement (b) is the classical Young’s inequality.

In order to extend the previous Theorem 2.1, in the frame of functionals theory,
we recall the following definition (one also may see [3], [4], [5] ).

Definition 2.2 Let E be a nonempty set and L be a linear class of real-valued
functions f, g : E → R having the following properties:

(L1) f, g ∈ L imply (αf + βg) ∈ L for all α, β ∈ R.
(L2) 1 ∈ L, i.e., if f0(t) = 1, ∀ t ∈ E, then f0 ∈ L.
An isotonic linear functional is a functional A : L → R having the following

properties:
(A1) A(αf + βg) = αA(f) + βA(g) for all α, β ∈ R;
(A2) If f ∈ L and f(t) ≥ 0 then A(f) ≥ 0.
The mapping A is said to be normalized if
(A3) A(1) = 1.

The extension of the inequality (a) of Theorem 2.1 is stated as follows:

Theorem 2.2 Let A : L → R be an normalized isotonic linear functional. If
f, g ≥ 0, fαgβ ∈ L and A(f), A(g) > 0 and α, β are real numbers so that

α+ β > 1, α ∈ (0, 1) then the following inequality holds:

(α+ β)Aα(f)Aβ(g) > A(fαgβ). (3)

Now, if f, g ≥ 0, fαgβ ∈ L and A(f), A(g) > 0 and α < 0, β < 0, then

(α+ β)Aα(f)Aβ(g) < A(fαgβ), (4)

where f, g : E → R are previous functions.

Proof. If we take in Theorem 2.1 (a), x = f
A(f) , y = g

A(g) then we get,

α
f

A(f)
+ β

g

A(g)
>

fα

Aα(f)

gβ

Aβ(g)
.

Now, if we take the functional A in previous inequality, we find that

A

(
α

f

A(f)
+ β

g

A(g)

)
> A

(
fα

Aα(f)

gβ

Aβ(g)

)
,
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or

α+ β >
A(fαgβ)

Aα(f)Aβ(g)
,

or
(α+ β)Aα(f)Aβ(g) > A(fαgβ),

if α+ β > 1, α ∈ (0, 1) and β > 0.
For the second inequality, (4) , we consider Theorem 2.1, (c) and we put
x = f

A(f) , y = g
A(g) . Then we have,

α
f

A(f)
+ β

g

A(g)
<

fα

Aα(f)

gβ

Aβ(g)
,

and from here, using the functional A, we obtain,

α+ β <
A(fαgβ)

Aα(f)Aβ(g)
,

or
(α+ β)Aα(f)Aβ(g) < A(fαgβ),

where α < 0, β < 0.

Another extension of the inequality (a) of the Theorem 2.1 is the following:

Theorem 2.3 Let A,B : L→ R be two normalized isotonic linear functionals. If
f, g : E → R are so that f ≥ 0, g > 0, fαg1−α, fβg1−β ∈ L and α, β ∈ R with
α+ β > 1, α ∈ (0, 1), β ∈ (0, 1), then we have:

αA(f)B(g) + βA(g)B(f) > A(fαg1−α)B(fβg1−β). (5)

Proof. We use inequality (a) from Theorem 2.1 for x = f(z)
g(z) , y = f(t)

g(t) , and we
have:

α
f(z)

g(z)
+ β

f(t)

g(t)
>
fα(z)

gα(z)

fβ(t)

gβ(t)
.

Multiplying by g(z)g(t) > 0 we obtain,

αf(z)g(t) + βf(t)g(z) > fα(z)g1−α(z)fβ(t)g1−β(t)

for any z, t ∈ E.
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Fix t ∈ E and then by previous inequality we have in the order of L that

αfg(t) + βf(t)g > fαg1−αfβ(t)g1−β(t).

If we take now the functional A in previous inequality then we have:

αg(t)A(f) + βf(t)A(g) > fβ(t)g1−β(t)A(fαg1−α),

for any t ∈ E.
This inequality can be written in the sense of the order of L as

αgA(f) + βfA(g) > fβg1−βA(fαg1−α),

and now, if we take into account the functional B in last inequality, then we obtain
the desired result.

Figure 1: The graph of the function f(x, y) = αx + βy − xαyβ for α = −3
7 and

β = −6
7
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Abstract

A generalization of classical Young’s inequality is applied for operators
in Hilbert spaces. 1

Keywords and phrases: Young’s inequality, operators, separable Hilbert
spaces.

1 Introduction

Let B(H) be the C∗− algebra of all bounded linear operators on a complex Hilbert
space H, and let A,B ∈ B(H) be two positive operators.

We recall the definition of the weighted arithmetic mean of A and B denoted
by A∇νB :

A∇νB = (1− ν)A+ νB,

where ν ∈ [0, 1].
If A is invertible then the weighted geometric mean of A and B, denoted by
A]νB, is defined by:

A]νB = A
1
2

(
A− 1

2BA− 1
2

)ν
A

1
2 .

When ν = 1
2 we notate A∇B and A]B instead of A∇ 1

2
B and A] 1

2
B.

If A and B are positive invertible operators, it is well-known that:

A∇νB ≥ A]νB, ∀ ν ∈ (0, 1),

which is the operatorial version of the classical Young’s inequality, see [9]
In the followings we will give some variants of the non-convex Young’s oper-

atorial inequality based on [10].

1MSC (2010): 26D15
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2 Main results

Proposition 2.1 Let A, B be two positive invertible operators on H so that there
is an r > 0 such

(1− r)B ≤ A ≤ (1 + r)B.

Then we have:

αA+ βB > B]αA, (1)

for any α, β fulfilling the conditions α+ β > 1, α ∈ (0, 1).
Moreover,

αA+ βAβ > Aα+β2
, (2)

as well as

αA+ βAα > Aα+αβ, (3)

for all α, β checking α+ β > 1 and α ∈ (0, 1).

Proof. We take y = 1 in the inequality (a) of Theorem 2.1 presented in [10]
and we get αx+ βy > xα when α+ β > 1 and α ∈ (0, 1).

Using the functional calculus with continuous functions of spectrum, see [1]
page 8, we find out that

αX + βI > Xα,

where X is the strictly positive operator on H.
If we put instead of the operator X the strictly positive operator B− 1

2AB− 1
2

we obtain

αB− 1
2AB− 1

2 + βI >
(
B− 1

2AB− 1
2

)α
,

when α+ β > 1 and α ∈ (0, 1).

Multiplying both sides of previous inequality by B
1
2 , it results

αA+ βB > B
1
2

(
B− 1

2AB− 1
2

)α
B

1
2 ,

when α+ β > 1 and α ∈ (0, 1), which is the relation (1) of the statement.
For the second inequality considering y = xβ > 0 and then y = xα > 0 in the

inequality (a) of Theorem 2.1 ([10]) we obtain

αx+ βxβ > xαyβ
2
, αx+ βxα > xα+αβ
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for any α, β fulfilling α+ β > 1 and α ∈ (0, 1).

Using again the fumctional calculus with continuous functions on spectrum,
for the strictly positive operator A, we have

the relations (2) and (3) of the statement.

Proposition 2.2 Let X, Y be two strictly positive operators on H, then there
is r > 0 having the properties (1 − r)I ≤ X,Y ≤ (1 + r)I, such that for any
α, β ∈ R α+ β > 1 and α ∈ (0, 1), it is true that

αX + βY + (α+ β)I ≥ X α
2 Y

β
2 + Y

β
2X

α
2 . (4)

Proof. We know by Theorem 2.1 (a) ([10]) that there is r > 0, such that

αx+ βy ≥ xαyβ

for any x, y ∈ [1− r.1 + r], when α+ β > 1 and α ∈ (0, 1),

In particular, for x = 1, it results that

α+ βy ≥ yβ

and for y = 1, it results that

αx+ β ≥ xα

in the same mentioned conditions.

Using now the functional calculus with continuous functions on the spectrum
we will respectivelly find

αI + βY ≥ Y β

and

αX + βI ≥ Xα.

Then

αX + βY + (α+ β)I ≥ Xα + Y β (5)

For any strictly positive operators U, V it is known that (U − V )2 ≥ 0, hence
U2 + V 2 ≥ UV + V U.

By that result applied in (5) taking U = X
α
2 and V = Y

β
2 it results the

desired inequality (4) of the statement.
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Corollary 2.3 In particular, if X = B− 1
2AB− 1

2 , Y = B− 1
2CB− 1

2 , ( where
A,B,C are strictly positive operators) check the hypothesis of Proposition 2.2
then

αA+ βC + (α+ β)B >

> B
1
2

(
B− 1

2AB− 1
2

)α
2
(
B− 1

2CB− 1
2

)β
2 B

1
2 +B

1
2

(
B− 1

2CB− 1
2

)β
2
(
B− 1

2AB− 1
2

)α
2 B

1
2 .
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Abstract

In the last years researches in fractional calculus was extended in many
areas. For further study of its applications in Machanical Area this paper
presents numerical methods for solving some differential fractional equations
using MATLAB. This work contains methods for fractional calculus computa-
tions like “Grünwald-Letnikov method” or “Podlubny’s matrix approach” and
examples using MATLAB for solving ordinary fractional differential equations.
1

Keywords and phrases: fractional calculus, MATLAB, differential frac-
tional equations, Grünwald-Letnikov

1 Introduction

In the past few years, fractional computation has become a field of study that
has been searched for, in the sense of applying to different branches of science [13]
such as:

• Fractals [2]

• Propagation of ultrasonic waves [8, 21]

• The theory of viscoelasticity [22]

• Fluid Mechanics [12]

The concept of fractional computation appeared in 1965 and L’Hospital wrote
to Leibnitz asking him the meaning of the derivative dny

dxn if n = 1
2 . But if n were

fractional, irrational or complex?
Leibnitz replied:

1MSC (2010): 34A08; 35R11; 65K15
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If n = 1
2 then

d
1
2x = x

√
dx : x (1.1)

and “a seeming paradox from which one day will draw very useful consequences”.
Thus, the name of fractional computation has become an improper term for inte-
gration and arbitrary differentials.

In 1812 Laplace defined the arbitrary fractional derivatives as they were pub-
lished in the writings of Lacroix’s 1819.

Starting from y = xm, m ∈ Z+ Lacroix has developed the following n − th
derivative:

dny

dxn
=

m!

(m− n)!
xm−n, m ≥ n (1.2)

Using the Legendre symbol for factorial, Gamma Function, (see Remark 1.1)
will get:

dny

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n (1.3)

If y = x şi n = 1
2 we have:

d
1
2 y

dx
1
2

=
2
√
x√
π

(1.4)

Remark 1.1. Definition of the Gamma function
The most important function of fractional calculation is the Function Γ(z) as it

is presented in [16]. It generalizes n! and allows number n to take different values
of whole numbers even complex.

Definition 1.2. The function Γ(z) is defined by means of the integral:

Γ(z) =

∞∫

0

e−ttz−1 dt,

which converges to the right half of the Complex Re(z) > 0.

Indeed, we have

Γ(x+ iy) =

∞∫

0

e−ttx−1+iy dt

=

∞∫

0

e−ttx−1eiy log(t) dt

=

∞∫

0

e−ttx−1[cos(y log(t)) + i sin(y log(t))] dt.

(1.5)
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The expression in square brackets is bordered fo ∀ t. Convergence to infinity is
given by t = 0 we have x = Re(z) > 1.

We use (1.3) to evaluate the fractional derivative of f(t) = et.

f(t) = et =
∞∑

k=0

tk

k!
(series) (1.6)

Applying (1.3) we obtain:

dν

dtν
=

∞∑

k=0

tk−ν

Γ(k − ν + 1)

where ν > 0 and ν ∈ R (real number) Fractional derivative of exponential function
does not returns exponential function.

2 Definitions for fractional calculation

This section introduces the main definitions for fractional calculation applied
in the analysis.

Definition 2.1. Euler (1730)

dnxm

dxn
= m(m− 1)(m− 2)...(m− n+ 1)xm−n

Γ(m+ 1) = m(m− 1)...(m− n+ 1)Γ(m− n+ 1)

dnxm

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n

d1/2x

dx1/2
=

√
4x

π
=

2

π
x1/2,

unde Γ(z) =
∞∫
0

e−ttz−1 dt, Re(z) > 0.

Definition 2.2. J. B. J. Fourier (1820-1822) introduced:

f(x) =
1

2π

∞∫

−∞

f(z) dz

∞∫

−∞

cos(px− pz) dp.
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The definition of fractional operation was obtained from the representation of
the integral f(x).

For n integer number, we have

dn

dxn
cos p(x− z) = pn cos[p(x− z) +

1

2
nπ],

meaning

dnf(x)

dxn
=

1

2π

∞∫

−∞

f(z) dz

∞∫

−∞

pn cos[p(x− z) + n
π

2
] dp.

Definition 2.3. N. H. Abel (1823-1826) introduced the definition of fractional
integrals:

x∫

0

S′(η)dη

(x− η)α
= ψ(x).

In fact he has solved the whole for an arbitrary number α and not just for α = 1
2

obtaining:

S(x) =
sin(πα)

π
xα

1∫

0

ψ(xt)

(1− t)1−αdt.

After which Abel expressed the resulting solution with the help of the α. order:

S(x) =
1

Γ(1− α)

d−αψ(x)

dx−α
.

Abel applied the fractional calculation in the solution of the integral equation
of the formulation the problem of finding the shape of the curve so that the time
of frictionless descent, sliding under the action of gravity independent of the point
starting. If the slip time is constantly known (T ), the equation becomes:

k =

x∫

0

(x− t)−1/2f(t)dt.

This equation, except 1
Γ(1/2) , is the particular case of the defined integrability

represents the first fraction integral 1
2 .

√
π[d−1/2/dx−1/2]f(x)

d1/2/dx1/2, we get

d1/2

dx1/2
k =
√
πf(x).
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Definition 2.4. J. Liouville (1823-1855):
I. In its first definition, according to the exponential representation of the func-

tion f(x) =
∞∑
n=0

cne
anx, generalized the formula dmeax

dxn = ameax like

dνf(x)

dxν
=

∞∑

n=0

cna
ν
ne
anx

II. The second type of definition was that of the fractional integral:

∫ µ

Φ(x)dxµ =
1

(−1)µΓ(µ)

∞∫

0

Φ(x+ α)αµ−1dα

∫ µ

Φ(x)dxµ =
1

Γ(µ)

∞∫

0

Φ(x− α)αµ−1dα

Substituting τ = x+ α şi τ = x− α in the formulas above, obtain:

∫ µ

Φ(x)dxµ =
1

(−1)µΓ(µ)

∞∫

x

(τ − x)µ−1Φ(τ)dτ

∫ µ

Φ(x)dxµ =
1

Γ(µ)

x∫

−∞

(x− τ)µ−1Φ(τ)dτ.

III. The third definition, introduced the fractional derivative:

dµF (x)

dxµ
=

(−1)µ

hµ

(
F (x)

µ

1
F (x+ h) +

µ(µ− 1)

1 · 2 F (x+ 2h)− ...
)

dµF (x)

dxµ
=

1

hµ

(
F (x)

µ

1
F (x− h) +

µ(µ− 1)

1 · 2 F (x− 2h)− ...
)

Definition 2.5. G. F. B. Riemann (1847-1876):
Its definition for fractional integrals is:

D−νf(x) =
1

Γ(ν)

x∫

c

(x− t)ν−1f(t)dt+ ψ(t)
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Definition 2.6. N. Ya. Sonin (1869), A. V. Letnikov (1872), H. Laurent (1884),
N. Nekrasove (1888), K. Nishimoto (1987):
They considered the integral Cauchy formula

f (n)(z) =
n!

2πi

∫

c

f(t)

(t− z)n+1
dt

and replace n cu ν got

Dνf(z) =
Γ(ν + 1)

2πi

∫ x+

c

f(t)

(t− z)ν+1
dt.

Definition 2.7. Definition Riemann-Liouvill:
The classic definition of fractional calculation is the one that shows the link between
the two previous definitions.

aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n t∫

a

f(τ)dτ

(t− τ)α−n+1

(n− 1 ≤ α < n)

Definition 2.8. Grünwald-Letnikove:
This is another definition that is sometimes useful.

aD
α
t f(t) = lim

h→0
h−α

[ t−ah ]∑

j=0

(−1)j
(
α
j

)
f(t− jh)

Definition 2.9. M. Caputo (1967):
The second common definition is

C
aD

α
t f(t) =

1

Γ(α− n)

t∫

a

f (n)(τ)dτ

(t− τ)α+1−n

(n− 1 ≤ α < n)
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Definition 2.10. Oldham and Spanier (1974):

dqf(βx)

dxq
= βq

dqf(βx)

d(βx)q

Definition 2.11. K. S. Miller, B. Ross (1993):
They used a different operator D as

Dᾱf(t) = Dα1Dα2 ...Dαnf(t), ᾱ = (α1, α2, ..., αn)

where Dαi is definition of Riemann-Liouvill or Caputo.

3 Fractional derivatives for some special functions

1. Unit function: For f(x) = 1 we have

dq1

dxq
=

x−q

Γ(1− q) , ∀q.

2. The identical function: For f(x) = x we have

dqx

dxq
=

x1−q

Γ(2− q) .

3. The exponential function: f(x) = ex is

dqe±x

dxq
=

∞∑

k=0

xk−q

Γ(k − q + 1)
.

4. The sinus function: If f(x) = sinx then

dq sin(x)

dxq
= sin

(
x+

qπ

2

)
.

5. The cosinus function: If f(x) = cosx then

dq cos(x)

dxq
= cos

(
x+

qπ

2

)
.
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6. Fractional derivatives LD
α
+ according to Liouville for some func-

tions special

f(x) dα

dxαf(x)

ekx kαekx k ≥ 0

sin(kx) kα sin(kx+ π
2α)

cos(kx) kα cos(kx+ π
2α)

erf(kx) divergent

e−kx
2 k

α
2

Γ(1−α)(Γ(1− α
2 )1F1(1

2 + α
2 ; 1

2;−kx2)

−
√
kαxΓ(1

2 − α
2 )1F1(1 + α

2 ; 3
2;−kx2))

− 2
√
kαxΓ(3

2 − α
2 ); 1F1(1

2 + α
2 ; 3

2;−kx2)

− 2
3k(1− α2)x2Γ(1

2 − α
2 )1F1(3

2 + α
2 ; 5

2;−kx2))

pFq({ai}; {bj}; kx) kα
p∏

i=1

Γ(ai+α)
Γ(ai)

q∏

j=1

Γ(bj)

Γ(bj+α)

pFq({ai + α}; {bj + α}; kx)

|x|−k Γ(k+α)
Γ(k) |x|−k−α, x < 0

7. Several special functions and their fractional derivatives RD
α

according to the Riemann definition

f(x) dα

dxαf(x)

ekx sign(x)(sign(x)k)α
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ekx
(

1− Γ(−α,kx)
Γ(−α)

)

sin(kx)
(2−α) ksign(x)|x|−αx
(2−3α+α2)Γ(1−α) 1F2

(
1; 3

2 − α
2 , 2− α

2 ;−1
4k

2x2
)

− k3sign(x)|x|−αx3
(32−α2 )(2−α2 )(2−3α+α2)Γ(1−α) 1F2

(
2; 5

2 − α
2 , 3− α

2 ;−1
4k

2x2
)

cos(kx) sign(x)
|x|−α
Γ(4−α)

((α− 1)(α− 2)(α− 3)1F2(1; 1− α
2 ,

3
2 − α

2 ;−1
4k

2x2)

+ 2k2x2
1F2(2; 2− α

2 ,
5
2 − α

2 ;−1
4k

2x2))

erf(kx) − 2−1+αk sign(x)|x|−α

((α− 2)2F̄2(1
2, 1; 3

2 − α
2 , 2− α

2 ;−k2x2)

+ k2x2
2F̄2(3

2, 2; 5
2 − α

2 , 3− α
2 ;−k2x2))

pFq({ai}; {bj}; kx) sign(x)|x|−α1
Γ(1−α)p+1Fq+1({1, 1 + ai}; {bj , 2− α}; kx)

+ ksign(x)|x|−αx1
(1−α)(2−α)Γ(1−α)

p∏

i=1

ai

q∏

j=1

1
bj

× p+1Fq+1({2, 1 + ai}; {1 + bj , 3− α}; kx)

log(x) x−α
Γ(2−α)(1− (1− α)(H1−α + log(x))), x > 0

xk
Γ(1+k)
Γ(1+k−αsign(x)|x|−αxk

4 Method Grünwald-Letnikov

For the numerical calculation of the fractional derivatives we can use the rela-
tion:

(k−Lm/h)D
q
tk
f(t) ≈ h−q

k∑

j=0

(−1)j
(
q
j

)
f(tk−j) = h−q

k∑

j=0

c
(q)
j f(tk−j) (4.1)

resulting from the Grünwald-Letnikov relation in Definition 2.8.



Some concepts of fractional differential calculus using MATLAB 71

This approach is based on the fact that for most of the function classes, the def-
initions of Grünwald-Letnikov, Riemann-Liouvill and M. Caputo are equivalent if
f(a) = 0.

Relationship for the explicit numerical approximation of the q−derivative in
the points kh, (k = 1, 2, ...) has the above given form (see 4.1) (Dorčák, 1994;
Podlubny, 1999), where:
−Ln is memory lenght
−tk = kh
−h =the time at that step

−c(q)
j (j = 0, 1, ...., k) = coefficient binomial.

To calculate them, we can use mathematical relations:

c
(q)
0 = 1, c

(q)
j =

(
1− 1 + q

j

)
c

(q)
j−1. (4.2)

Binomial coefficients c
(q)
j (j = 0, 1, ...., k) can also be expressed factorial. By

factorial writing, Function Gamma allows us to generalize the binomial coefficients
for arguments that are not integers.

(−1)j
(
q
j

)
= (−1)j

Γ(q + 1)

Γ(j + 1)Γ(q − j + 1)
=

Γ(j − q)
Γ(−q)Γ(j + 1)

. (4.3)

Obviously, for this simplification, the accuracy of the result is lost.

If f(t) < M, we can very easily set the estimated Lm (with accuracy ε)

Lm ≥
(

M

ε|Γ(1− q)|

) 1
q

. (4.4)

This is called Power Series Expansion (PSE). Transfer function discreetly re-
sulting, the approximate fractional order operators can be expressed in the range
−z in the following way:

0D
±r
kTG(z) =

Y (z)

F (z)
=

(
1

T

)±r
PSE

{
(1− z−1)±r

}
n
≈ T∓rRn(z−1), (4.5)

where:
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−T − reference;

−PSE{u} − The function results from the application of the PSE function u;

−Y (z) is converted ”Z” of the output sequence y(kT );

−F (z) is converted ”Z” of the input sequence f(kT );

−n− the order of approximation;

−R− the n-polynom in variable z−1 and k = 1, 2, ....

Aplication 4.1. Let the order of fractional derivation α ∈ [0, 1] for the function
y = sin(t) with t ∈ [0, 2π]. The following code in MATLAB uses the command f
deriv () entered by Bayat (2007) and based on 4.1.

Input data:

clear all; close all;
h = 0.01; t = 0 : h : 2 ∗ pi;
y = sin(t);
order = 0 : 0.1 : 1;
for i = 1 : length (order)
yd(i, :) = fderiv(order(i), y, h);

end
[X,Y ] = meshgrid (t, order);
mesh (X,Y, yd)
xlabel (t′); ylabel (′\alpha′); zlabel (′y′)

Figure 1: Fractional derivative of function y = sin(t)
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Figure 1 is a graphical derivative of the sinus function for fractional derivation
order 0 < α < 1 and 0 < t < 2π.

Aplication 4.2. We can get a better approximation of the fractional derivative if
h of the first relation h is small enough so it can be demonstrated that the accuracy
of this methods is 0. The MATLAB code for the application function 4.1 and the
function ex.

Input:

function dy =gdiff(y, x, gam)
h = x(2)− x(1); dy(1) = 0; y = y(:);x = x(:);
w = 1;
for j = 2 : length(x), w(j) = w(j − 1)∗(1− (gam+ 1)/(j − 1));
end
for i = 2 : length(x), dy(i) = w(1 : i)∗[y(i : −1 : 1)]/h∧gam;
end
by Matlab code
t = 0 : 0.001 : pi; y = sin(t); dy = gdiff(y, t, 0.9); plot(t, dy)
t = 0 : 0.001 : pi; y = sin(t); dy = gdiff(y, t, 0.9); plot(t, dy);
hold on;
t = 0 : 0.001 : pi; y = sin(t); dy = gdiff(y, t, 0.1); plot(t, dy);
t = 0 : 0.001 : pi; y = sin(t); dy = gdiff(y, t, 0.5); plot(t, dy);

we get 0.1, 0.5 a 0.9 derivative of function sin(x) see the fig below:

Figure 2: The 0.1, 0.5, 0.9 derivative of function sin(x)
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By Matlab:

t = 0 : 0.001 : 5; y = exp(t); plot(t, y)
t = 0 : 0.001 : 3; y = exp(t); plot(t, y)
hold on;
t = 0 : 0.001 : 3; y = exp(t); dy = gdiff(y, t, 0.3); plot(t, dy)
t = 0 : 0.001 : 3; y = exp(t); dy = gdiff(y, t, 0.5); plot(t, dy)
t = 0 : 0.001 : 3; y = exp(t); dy = gdiff(y, t, 0.7); plot(t, dy)

Figure 3: The 0.3, 0.5, 0.7 derivative of function ex

It is observed in figurative representation how 0.3−a 0.5-a şi 0.7−a derivatives
of ex are almost identical, which is similar to the classical derivation so (ez)′ = ez

and ez α derivativetimes that is also maintained for α =fractional.

5 Differential fractional equations

The general fractional system can be described by means of the differential
equation fractional form:

anD
αn
t y(t)+an−1D

αn−1

t y(t)+...+a0D
α0
t y(t) = bmD

βm
t u(t)+bm−1D

βm−1

t u(t)+...+b0D
β0
t u(t),

(5.1)

where Dγ
t ≡ 0D

γ
t express Grünwald-Letnikov, Riemann-Liouvill sau Caputo

derivatives fractional. The corresponding irrational transfer function has the form
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G(s) =
bms

βm + ...+ b1s
β1 + b0s

β0

ansαn + ...+ a1sα1 + a0sα0
=
Q(sβk)

P (sαk)
, (5.2)

where ak(k = 0, ...n), bk(k = 0, ...m) are constants, and αk(k = 0, ...n), βk(k =
0, ...m) are real or rational numbers of any kind and without limitation the gener-
ality may be arranged

αn > αn−1 > ... > α0, βm > βm−1 > ... > β0. (5.3)

In a particular case for systems of commensurable order, keep αk = αk, βk =
αk, (0 < α < 1), ∀k ∈ Z, and the transfer function has the following form:

G(s) = K0

M∑
k=0

bk(s
α)k

N∑
k=0

ak(sα)k
= K0

Q(sα)

P (sα)
. (5.4)

With N > M, the function G(s) becomes its own rational function in complex
variables sα and what can be extended to form:

G(s) = K0

[
N∑

i=1

Ai
sα + λi

]
,

where λi(i = 1, 2, ..., N) are the roots of the pseudo polynomial or the polynomial
system. The analytical solution of the system can be expressed

y(t) = L−1

{
K0

[
N∑

i=1

Ai
sα + λi

]}
= K0

N∑

i=1

Ait
αEα,α(−λitα), (5.5)

anD
αn
t y(t) + ...+ a1D

α1
t y(t) + ...+ a0D

α0
t y(t) = 0, (5.6)

where ak(k = 0, 1, ..., n) are constant coefficients; αk(k = 0, 1, 2, ..., n) are real
numbers.

Without restricting generality, we ca assume that αn > αn−1 > ... > α0 ≥ 0.

The analytical solution of 5.6 is given by the general formula in the form:

y(t) =
1

an

∞∑

m=0

(−1)m

m!

∑

k0+k1+...+kn−2=m

k0≥,...,kn−2≥0

(m; k0, k1, ..., kn−2)

×
n=2∏

i=0

(
ai
an

)ki
Em(t,−an−1

an
;αn − αn−1, αn +

n=2∑

j=0

(αn−1 − αj)kj + 1),
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where (m, k0, k1, ..., kn−2) are multinomial coefficients.

It is the control function that modifies the system 5.6 in:

anD
αn
t y(t) + ...+ a1D

α1
t y(t) + a0D

α0
t y(t) = u(t). (5.7)

Through Laplace, we get the fractional transfer function:

G(s) =
Y (s)

U(s)
=

1

ansαn + ...+ a1sα1 + a0sα0
. (5.8)

Aplication 5.1. Given a fractional differential of the second order, with initial
zero conditions, α = 1.5, a = 2, b = 1, pasul = 0.001 calculation time 20sec. :

aDα
t y(t) + by(t) = 1. (5.9)

The solution can be obtained using Laplace’s transformation method, it can be
expressed:

Y (s) =
1/a

s(sα + b/a)
(5.10)

and the general solution is as follows:

y(t) =
1

a
E0(t,− b

a
;α, α+ 1) ≡ 1

a
tαEα,α+1

(
− b
a
tα
)
. (5.11)

To get the solution in MATLAB, we can use the following commands:

clear all; close all;
a = 2; b = 1; alpha = 1.5;
t = 0 : 0.001 : 20;
y = (1/a) ∗ t.∧(alpha). ∗mlf(alpha, alpha+ 1, ((−b/a) ∗ t.∧(alpha)));
plot(t, y);
xlabel(′Time[sec]′);
ylabel(′y(t)′);
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Figure 4: The equation solution

References

[1] F. Barpi, S. Valente, Creep and fracture in concrete: a fractional order rate
approach, Elsevier Science Ltd. (2002);

[2] A. Carpinteri, B. Chiaia, P. Cornetti, A fractional calculus approach to the
mechanics of fractal media, Volume 58, Torino (2000);

[3] A. Carpinteri, Kiran, M. Kolwankar, P. Cornetti, Calculation of the tensile and
flexural strength of disordered materials using fractional calculus, Elsevier Ltd.
(2004);

[4] A. Carpinteri, P. Cornetti, F. Barpi, S. Valente, Cohesive crack model descrip-
tion of ductile to brittle size-scale transition: dimensional analysis vs. renor-
malization group theory, Elsevier Science Ltd. (2003);

[5] C. G. Koh, J. M. Kelly, Application of Fractional Derivatives to Seismic Anal-
ysis of Base-Isolated Models, Volume 19, Page 229-241 (1990);

[6] C. Chi, F. Gao, Simulating Fractional Derivatives using Matlab, Journal of
Software, Volume 8, Number 3, (March 2013);
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Ion Voda 58, 900573, Constanţa, ROMANIA
E-mail: elena lmm@yahoo.com



 
INSTRUCTIONS  FOR  THE  AUTHORS 

 
 
 

The "Buletinul Ştiinţific al Universităţii Politehnica Timişoara” is a direct successor of the 
"Buletin scientifique de l'École Polytechnique de Timişoara" which was started in 1925. Between 1982 – 
1989 it was published as the “Lucrǎrile Seminarului de Matematicǎ şi Fizicǎ ale Institutului Politehnic 
“Traian Vuia” din Timişoara”. 

Publication program: one volume per year in two issues, each series. 
The "Mathematics-Physics" series of the "Buletinul Ştiinţific al Universităţii Politehnica 

Timişoara" publishes original papers in all areas of the pure and applied mathematics and physics. 
1. The manuscript should be sent to the Editor, written in English (or French, or German, or 

Russian). The manuscript should be prepared in LATEX. 
2. Maximum length of the paper is 8 pages, preferably in an even number of pages,  

in Times New Roman (12 pt). 
3. For the first page the authors must bear in view: 
            - an Abstract single spaced (at most 150 words) will be placed before the 

   beginning of the text as: ABSTRACT. The problem of ... 
- footnote with MSC (Mathematics Subjects Classification) or PACS (Physics Abstracts    
   Classification System) Subject Classification Codes (10 pt) 

            4. Graphs. illustrations and tables should placed into the manuscript (send it as .eps or .pdf file), 
with the corresponding consecutively number and explanations under them. 

5. The complete author's (authors') address(es) will be placed after References. 
            6. A Copyright Transfer Agreement is required together with the paper. By submitting a paper to 
this journal, authors certify that the manuscript has not been submitted to, nor is it under consideration 
for publication by another journal, conference proceedings, or similar publications. 

7. There is no page charge and after registration a paper is sent to two independent referees. 
After acceptance and publication the author will receive 5 reprints free of charge. If a larger amount is 
required (fee of 2 USD per copy per article) this should be communicated to the Editor. 

8. Manuscripts should be sent to: 

 

For Mathematics 
Dr. Liviu CĂDARIU 
POLITEHNICA  UNIVERSITY  TIMISOARA 
Department of Mathematics 
Victoriei Square,  No. 2 
300006 – TIMIȘOARA, ROMANIA 
liviu.cadariu-brailoiu@mat.upt.ro    

For Physics 
Dr. Dušan POPOV 
POLITEHNICA  UNIVERSITY  TIMISOARA 
Department of  Physical Fundamentals  
of Engineering 
B-dul. V. Parvan, No.2 
300223 – TIMIȘOARA, ROMANIA 
dusan.popov@et.upt.ro  

 


