2. OSCILATII

2.1. Notiuni generale

Se numeste oscilatie fenomenul fizic in decursul caruia o anumitda marime
fizica a procesului prezintda o variafie periodicd sau pseudo-periodica in timp. Un
sistem fizic izolat, care este pus Tn oscilatie, efectueaza oscilatii libere sau proprii, cu o
frecventa numita frecventa proprie a sistemului oscilant. Oscilatiile pot fi clasificate in
functie de mai multe criterii.

Din punct de vedere a formei de energie dezvoltata in timpul oscilatiei, putem
ntalni: (i) oscilatii elastice, mecanice (au loc prin transformarea reciproca a energiei
cinetice Tn energie potentiald); (ii) oscilatii electromagnetice (au loc prin transformarea
reciproca a energiei electrice in energie magnetica); (iii) oscilafii electromecanice (au
loc prin transformarea reciproca a energiei mecanice in energie electromagnetica).

Din punct de vedere al conservarii energiei sistemului oscilant, putem clasifica
oscilatiile in: (i) oscilatii nedisipative, ideale sau neamortizate (energia totala se
conserva); (ii) oscilatii disipative sau amortizate (energia scade in timp); (iii) oscilafji
fortate sau intretinute (se furnizeaza energie din afara sistemului, pentru compensarea
pierderilor).

Marimi caracteristice oscilatiilor.

Sa notam cu S(t) marimea fizica care caracteriozeaza o oscilatie. Atunci, daca
T este perioada oscilatiei, marimea S are aceasi valoare la momentul t si la un moment
ulterior, t+ T:

S(t) = S(t+T)

Oscilatiile armonice sunt acel tip de oscilatii in care marimile caracteristice se
pot exprima prin functii trigonometrice (sinus, cosinus sau funciii exponentiale de
argument complex). Acele oscilatii care nu sunt armonice se pot descompune in serie
Fourier de functii. Reamintim de asemenea formulele lui Euler, care vor fi utile in
calculele urmatoare:

Miscarea oscilatorie armonica apare foarte des in situatiile practice. Un
exemplu foarte la Indeméana il constituie bataile inimii. Se spune ca Galilei folosea
bataile inimii sale pentru a cronometra miscarile pe care le studia.

2.2, Migcarea oscilatorie armonica ideala
in absenta unor forte de frecare sau de disipare a energiei, miscarea

oscilatorie este o miscare ideald, deoarece energia totala a oscilatorului raméane
constanta Tn timp. Miscarea este reversibila, astfel ca dupa o perioada oscilatorul
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revine Tn pozitia initiala si procesul se reia. Forta care determina revenirea oscilatorului
in pozitia inifiala si care permite continuarea oscilatiei se numeste fortd de revenire.
Aceasta forta de revenire poate fi forfa elastica dint-o lama metalica, presiunea dintr-un
tub, etc.

Sa consideram un oscilator mecanic format dintr-un resort elastic si un corp
punctiform, de masa m, legat la capatul liber al resortului, ca in fig.2.1.a. Daca se pune
corpul in migcare prin intermediul unei forte si daca nu exista frecari, sistemul va
efectua o migcare periodica n jurul pozitiei de echilibru, numita oscilatie ideala.
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Fig.2.1. Oscilator mecanic ideal: a) momentul initial; b) alungirea y produce

forta de revenire lfe ; ¢) amplitudinea migcarii oscilatorii.
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A Representation Theorem for the Error
of Recursive Estimators

Laszlé Gerencsér

Abstract— The objective of this paper is to present advanced
and less known techniques for the analysis of performance
degradation due to statistical uncertainty for a wide class of
linear stochastic systems in a rigorous and concise manner.
The main technical advance of the present paper is a strong
approximation theorem for the Djereveckii-Fradkov-Ljung
(DFL) scheme with enforced boundedness, in which, for any
q = 1, the Ly-norms of the so-called residual terms are shown
to tend to zero with rate N~ '/*~% with some ¢ > 0. This
is a significant extension of previous results for the recursive
prediction error or RPE estimator of ARMA processes given
in [L. Gerencsér, Systems Control Lett., 21 (1993}, pp. 347-351.
Two useful corollaries will be presented. In the first a standard
transform of the estimation-error process will be shown to be
L-mixing. In the second the asymptotic covariance matrix of
the estimator will be given. An application to the minimum-
variance sell-tuning regulator for ARMAX systems will be
described.

I. INTRODUCTION

The objective of this paper is to present new techniques
for the analysis of performance degradation due to statistical
uncertainty for a wide class of linear stochastic systems in
a rigorous and concise manner. It is hoped that this paper
helps to access the complete theory developed in [18].

Performance degradation due to statistical uncertainty is
called regret, following [28]. The objective of the paper is to
develop new techniques that can be used for analyzing the
path-wise (almost sure) asymptotics of the cumulative regret
for a class of adaptive prediction and stochastic adaptive
control problems. Special examples of these technical tools
have been presented in [16]. This research is also motivated
by problems in stechastic complexity and identification for
control, see [34] and [21].

The immediate technical objective is a detailed analysis of
the Djereveckii—Fradkov—Ljung (DFL) scheme with enforced
boundedness, given as Algorithm DFL, (21)-(22); see [7].
[33]. This is a practically useful recursive estimation method
with a wide range of applications; see [7], [33].

The study of the DFL scheme can be reduced to the study
of two related stochastic approximation methods, Algorithm
DR (discrete-time recursion) and Algorithm CR (continuous-
time recursion). Therefore some of the results will be stated
only for Algorithm CR.

Tight control of the difference between the estimation
error and its standard approximation, that will be referred
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to as residuals, is crucial in the analysis of performance
degradation due to statistical uncertainty; see [16]. The main
technical advance of the present paper is a strong approxi-
mation theorem for the DFL scheme, given as Theorem 4.2.
It extends the result of [15] on the residual of the recursive
prediction error estimator for ARMA processes.

The proof relies on [12] and uses a nontrivial moment
inequality for weighted multiple integrals of L-mixing pro-
cesses given in [14]. Preliminary versions of the results of
have been formulated in [13]. In Theorem 5.1 a standard
transform of the estimation-error process for the basic re-
cursive estimation method, Algorithm CR, is shown to be
an L-mixing process, while in Theorem 6.1 the asymptotic
covariance matrix of the estimator for the same method will
be given.

The significance of the results of the present paper is
demonstrated by describing an applications in Section 7,
in which the path-wise cumulative regret for the minimum-
variance self-tuning regulator is computed.

II. BASIC NOTIONS AND CONDITIONS

We shall need the following definition, see [10]. We say
that a discrete-time R”-valued stochastic process (un) is M-
bounded if, for all 1 < g < =<,

Mg(u) := sup EY9u,, |9 < . [§)]
n=0
In this case we also write 1, = Oyy(1). For a stochastic
process (z,),n > 0, and a positive sequence (¢,,) we write
2n = Opr(en) if up = 2 /e, = Oy (1).

A basic tool that we will use is the theory of L-mixing
processes, see [10], that has been successfully applied in
[11]. [12], [15], [23], [26]. For a similar notion see Def-
inition 3.1 in Section 8.3 of [3]. Let a probability space
(©,F, P) be given together with a pair of families of o-
algebras (Fn,F,F),n = 0,1,..., such that (i) F, € F is
monotone increasing, (i) 7,7 C F is monotone decreasing,
and (iii) , and F,| arc independent for all n. For n < 0
we set Fo = F.

Definition 2.1: A stochastic process u = (1, ),n > 0, is
L-mixing with respect to (Fn, F,7) if it is Fy-adapted, M-
bounded, and for all ¢ = 1, with 7 = 0 and

Ta(T 1) = 7(T) = supE””mn —E (un|F )9,
naTt

we have
oo

T, =T,u) = Zq-q(r) < . 2)

T=0
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The process u is L*-mixing if, in addition, for all ¢ = 1
there exist Cy, ¢; > 0 such that for all 7 > 0,

Yo(ryu) < Co(1+7)71 7%,

The verification of L-mixing is typically easy in problems
of system identification, in contrast to other notions of mix-
ing. such as ¢-mixing. see, e.g.. Chapter 7.2 of [9]. For this
see see Chapter 17 of [25]. The prime example for L-mixing
processes is a sequence of i.i.d. random variables with finite
moments of all orders. The response of an exponentially
stable linear filter, with an L-mixing process as its input,
is L-mixing. Products of L-mixing processes are also L-
mixing.

I1I. GENERAL RECURSIVE ESTIMATION SCHEMES

The prime objective of this section is to formulate a
general recursive estimation method, the DFL scheme with
enforced boundedness, together with conditions that ensure
its convergence. But first we present two closely related
recursive algorithms which can be interpreted as “frozen
parameter” approximations to the DFL scheme. The con-
nection between Algorithm DR and the DFL scheme is not
straightforward at all, and will be discussed in some detail.

Our continuous-time recursive estimation process is given
by a random differential equation of the form

b= 1 H (b ow) +6H(E0),  m=&, O
defined over an underlying probability space ({2, F, P). Here
x¢ is the estimator sequence and H = (H(t,»,w)) is a
random field defined in [1, oc)x D % (), where D is a bounded
open domain in B? and §H (t, w)) is a perturbation term. The
technical conditions are identical with those of [18].

Condition 3.1: The process H = (H (i, z,w)) is defined
in QxR* x D, where D C I” is an open domain. It is three
times continuously differentiable with respect to = for 2 € [J
and for all w, and for any compact set Dy € I H and its
derivatives up to order 3 are M -bounded in Iy. Furthermore
(H(t,z,w)) and its first derivative H, = (H,(t,z,w)) are
L+ -mixing with respect to (F;, F;"), uniformly in = € Dy.

Condition 3.2: H(t,x,w) is piecewise continuous in ¢ for
all w, and for any compact set )y C ) there exists a random
variable Ly = L;(w) = 0 such that

|He(t,z,w)| < Li(w)

for all z € Dy, and here L, is such that for some = > 0 we
have
supEexp(sLy) < oo. )

It follows that if (c)'h;(t._ w)) is piecewise continuous in ¢ for
all w, then a solution (z¢) of (3) exists for all w in some
finite or infinite interval. A central role in the analysis of
(z¢) is played by the mean-field EH (¢, », w).

Condition 3.3: We have for any compact set Dy C D and
t=>0,ze Dy

EH(t,z,w) = G(z) + 6G(t,x),

WeA09.5

where §G(t,z) = O(t~1/275) uniformly in z € Dy, with
> 0. G(y) has continuous and bounded partial
derivatives up to third order. Finally, we assume that

some £

G(z) =0 )

has a unique solution z* in D.

The celebrated "ODE principle” states that the solution
trajectories of the random differential equation (3). under
additional conditions, follow the solution trajectories (x;) of
the associated ODE (6) given by

Bo=10W),  w=E s21 ®
Under the conditions above, (6) has a unique solution in
some finite or infinite interval, which we denote by y(t, s, £).
Since H is not defined on the whole space, we have to make
sure that the process () is constrained to D by a resetting
mechanism.

Algorithm CR. Consider a continuous-time recursion given
by a random differential equation

iy = %(H(t,x( Jw)+OH(tw)),

combined with the following resetfing mechanism. Let Dy C

D denote a compact truncation domain such that =% €
int Dy, Let & > 1 and let

=& (D)

(o) =min{t: t = o, 2, € D}, (8)

where d1)y denotes the boundary of Dy. Then we reset =
to o1 = &, which is formally stated by requiring that the
right-hand side limit of =, at t =7 = 7(7) will be &;:

T =&y @

Thus we get a piecewise continuous trajectory (z;) defined
in some finite or infinite interval.

To ensure that the estimator sequence is not bounced back
and forth by resetting we need to impose some condition on
relative position of =* and £; to the truncation domain. We
define the star-like closure of the set [y, relative to 2™ as

Diy=Ay:y=z"+Mxr—2%), 0<A<1,2ze Dy}.

Condition 3.4: Let Dy < D be a compact truncation
domain such that =* € intDj. We assume that (i) D is
convex and there exists a compact set Dfj C D such that
y(t,s5,&) € Df for £ € Dy and y(i,5,£) € D for £ € Df for
all £ > ¢ > 1. In addition lim,_, ., y(t,5,{) =2* for £ € D
and

l(@/2€)u(t, s, €)|| < Cols/t)*

with some Cy > 1, > O forall £ € Dy and t > s > 1.
(ii) We have an initial estimate 1 = £; such that for all
t > s > 1 we have y(t,s,&) € int Dy. (iii) Finally, for the
star-like closure of the set )y we have Dj C D.
On (10): it can be shown that with
G (x
AT = ai. )|:r:x‘

(10)

(11)
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and
o' = ming{—RA; (A"}, (12)
where A;(A*) are the cigenvalues of A*, condition (10) holds
with
a=at, (13)

where a® denotes any number that is smaller than a*. We
will also use the notation

dT=o—1/2. (14)

Finally, consider the perturbation term §H (¢, w). Follow-
ing [12] we use the following condition that will be discussed
later.

Condition 3.5: (4H (t,w)) is a measurable M -bounded
process, which is piecewise continuous in ¢ for all w,
moreover there exists an £ > 0 such that for any fixed g > 1
and for any s > 1,

T{o)hgo 1
sup f —|6H (r,w)|dr = Op(s~Y275). (15)

ssosgsJo r
It is no loss of generality to assume that ¢ < 1/2. We
assume that the £'s showing up here and in Condition 3.3
are identical.

Then a discrete-time recursive estimation process is given
by the following algorithm:

Algorithm DR. (Discrete-time recursion with resetting):

Tntl = Tn+ HLH(H(H._F Lop,w)+dH(n+1,w)), (16)
with 79 = £ € int Dy. Boundedness of the estimator
sequence is enforced by resetting x,+1 to mp if the pre-
computed value of xy,1 leaves Dp.

We can analyze this algorithm by continuous-time imbed-
ding, see [12]. A more accurate and more recent technique
is to use a discrete-time ODE method, see [17].

We now turn to the definition of the DFL scheme, based
on [3]. [6], [32]. see also the books [2], [7]. [33]. Its basic
building block is a parameter-dependent R"-valued process
(dn(x)), with @ € D C RP defined by the state-space
equation

D1 (@) = Al2)e, (2) + Blz)e,, (n

with some non-random initial condition (), the value of
which is often assumed to be zero. To ensure that for any
choice of = x,, € D the time-varying system obtained
from (17) is bounded input-bounded output stable, we need
the following condition.

Condition 3.6: The family of matrices A(x), = € Dy,
with Iy being the preselected truncation domain, is jointly
stable in the sense that there exist a single symmetric positive
definite r x » matrix V and 0 < A < 1 such that

AT(x)VA(z) < AV for all z € Dy.

Moreover, the functions A(x), B(x) are three times contin-
uously differentiable in D.

WeA09.5

Joint stability can be achieved by suitable z-dependent
state-space transformations that convert all A-matrices into
contractions.

Condition 3.7: We assume that (e,,) is a wide-sense sta-
tionary process and that |e,,|2 is such that for some £ = 0
we have

supE expzle,|? < oc.
n

Condition 3.8: We assume that (en) is LT -mixing with
respect to a pair of families of a-algebras (F, F,] ).

Discussion. Condition 3.7 is standard in [4]. The weaker
condition that (e5) is M -bounded is implicitly assumed also
in [2] (see Example 1, p. 215). Condition 3.7 is essential to
ensure that the application of the Bellman-Gronwall lemma
to estimate x; — ¥, gives meaningful result. The role of
Condition 3.8 is essential in establishing the connection be-
tween the DFL scheme and the “frozen parameter” algorithm
Algorithm DR, see [12, sections 5 and 6].

Define a random field H (n, z,w) as follows:

H(n,z,w) = Q(8(x)), (18)

where for the sake of simplicity @ is a quadratic function
from B" to RP. An alternative, more general definition would
be H(n,z,w) = F(Q(d,(x)), 2). where ( is quadratic and
F' is three times continuously differentiable and linear in
(). We define the mean-field G(x) as above. The estimation
problem in the context of the DFL scheme is then to solve
the nonlinear algebraic equation

G(z)=0
in real time. It is assumed that a unique solution z* exists

in D.

The estimate of =* at time n will be denoted by x,. We
generate an online approximation of Q(¢,(ry)) and thus
we arrive at the following tentative first version of the DFL

method:
(19)
(20)

Alzn)én + Blzn)en,

1 ,
Ty + EQ(GR‘FI )‘

Ony1 =
Tpy1 =

with initial conditions xp — £ € intDy and ¢g a constant,
nonrandom initial state. Tt is assumed that (J(¢n1) is com-
putable by coupling a physical system with our computer.

Discussion on the DFL scheme. The applicability of this
general estimation scheme in the theory of recursive iden-
tification of linear stochastic systems has been discussed in
more details [33]. Further examples of application are given
in [2], in which also a rigorous and detailed analysis of a
nonlinear modification of the DFL scheme is given, using a
Markovian dynamics in generating the state sequence (@y,).
A special example of the extended DFL scheme is the LMS
method, in which &,, does not depend on z at all.

It is well known from simulations that the DFL scheme
may diverge, unless some precaution is taken. Therefore the
estimates @, will be enforced to stay in a compact domain
Dy < D, such that * € intDy. This will be achieved by the
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usual a resetting mechanism. Thus we arrive at the following
algorithm:
Algorithm DFL. (The DFL scheme with resetting):

A(In] ‘_jlﬂ + B(In)€n|

1 ,
Tn+ m@(@ﬂﬁd):

and if xp, 41— ¢ intDy, then we reset it to &.

Discussion of the “boundedness condition.” The eventual
divergence of the DFL scheme is traditionally dealt with a
controversial boundedness condition, or an equally contro-
versial “projection method™ which may fail even for deter-
ministic algorithms. A rigorous treatment of the boundedness
problem has been given in [2], where the estimator process is
stopped if it leaves a prescribed compact domain. Denoting
by 2 €  the event that the estimator process is never
stopped, the almost sure convergence of the estimator process
has been established on ()'; see [2, Part II, Chapter 1.6,
Proposition 11].

Discussion of Condition 3.5. To connect the DFL scheme
with Algorithm DR define

0H (n,w) = Q(dn) — QD ().

Then (22) can be written in the form of (16). A critical point
in the analysis of the DFL scheme is that the perturbation
term 8 H (n,w) is not given a priori, rather it is defined via
the recursive procedure itself. The analysis of dH (n,w) is
a substantial component of the convergence analysis of the
DFL-method, which has been worked out in [12, sections 5
and 6], leading to the following result:

Consider the DFL scheme defined by (21)-(22). Assume
that Conditions 3.6, 3.7, and 3.8 arc satisfied. In addition
assume that Condition 3.4 is satisfied with o > 1/2.
Then (6 H(n,w)) defined by (23) is an M-bounded process,
moreover (§H (n,w)) satisfies the discrete version of Con-
dition 3.5.

A basic result if [12] is the following theorem, a special
feature of which is that the higher order moments of the
estimation error are bounded from above.

Theorem 3.1: Consider the DFL scheme defined by (21}
(22). Assume that Conditions 3.6, 3.7, and 3.8 are satisfied.
In addition assume that Condition 3.4 is satisfied with o >
1/2. Then we have @, = Op(n= /%),

(21
(22)

én+1 =

Tnt1— =

(23)

IV. STRONG APPROXIMATION OF THE ESTIMATION
ERROR

In this section we present a significant extension of the
results of [15] for the recursive estimation schemes of the
previous section.

Theorem 4.1: Consider the continuous-time recursive es-
timation scheme, Algorithm CR. given by (7) with the
resetting mechanism (8) and (9). Assume that Conditions
3.1-3.5 are satisfied and Condition 3.4 is satisfied with
o > 1/2. Then the solution of (7), (), is defined for all
t € [1, 00) with probability 1 and we have with

£, = min(@,=)_,

WeA09.5

where c_ is any number smaller than ¢, @ is given by (14),
and e is given in Condition 3.5,

t
a 1 0.
o —a* :/ ,—y(t‘3‘:r’]fH(s’_.r”,u;}dBJrOM(t_lD_“‘).
1 ¢ 8

To interpret this result note that the matrix ((%)y(t, 8, %)
is the sensitivity matrix, which indicates the relative effect of
a perturbation of the initial condition at time s on the solution
of (6) at time f. Thus the dominant term on the right-hand
side represents the cumulative effect of the ideal correction
terms 1H(s,2*,w) at time t. A relatively straightforward
corollary of Theorem 4.1 is an analogous discrete-time result,
which, specialized to the DFL scheme, gives the following:

Theorem 4.2: Consider the DFL scheme defined by (21)-
(22). Assume that the state-space equation (17) satisfies
Condition 3.6, the noise process (en) satisfies Conditions
3.7 and 3.8, and the associated ODE satisfies Condition 3.4
with e« > 1/2. Let = = min(@,¢)—, where @ is defined
under (14) and = is given in Condition (3.5). Then we have

N .
ay—at = Zl 3%(“‘3 n. w*)%Q(En (%)) +O0p (N 7112755,

The above result is particularly simplified for partially
stochastic Newton methods, i.e. when the Jacobian A* is of

the form
-I 0
( ¥)
where [ is an identity matrix. The corresponding decompo-
sition of the parameter vector = is = = (x!, 22).

Theorem 4.3: Assume that the conditions of Theorem 4.2
are satisfied and that we can split the parameter vector =
as # = (2, 2?) so that the estimation method is a partially
stochastic Newton method with respect to !, Let (Q', Q%)
be the corresponding splitting of @. Then

N
1 . -
ak —a'" = £ 3 Q'@ala") + Om(N7V/275),

Discussion of the re;ﬂ}. Theorem 4.3 is a powerful alterna-
tive to results obtained by weak convergence techniques, see
[27]. or by stochastic regression methods, see [29], [8].

The proof of the key Theorem 4.1 relies on a moment
inequality for weighted multiple integrals of L-mixing pro-
cesses given in [14].

V. THE TRANSFORMED ERROR PROCESS 18 L-MIXING

In this section present an extension of one of the results
in [16] stating that an appropriate transformation of the error
process x; —x* is L-mixing. Define the transformed process

Fp = € (zpr —a*). (24)

The weak limit of the shifted process (#,4,), when p — oo,
is studied in Chapter 4.5, Part Il of [2](see Theorem 13)
in a Markovian framework. It is proven there that (&, ,)
converges weakly to the stationary solution of the linear
stochastic differential equation

di. = (A” + 1/2)3, + dii,., (25)

323
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assuming that (A* 41 /2) is stable. Here dil,. is a Gaussian
white noise with intensity, say P*dt. - The weak limit (2,.) is
a prime example for an L-mixing process. A surprising result
is that the transformed process () itself is also L-mixing.

Theorem 5.1: Consider the continuous-time recursive es-
timation scheme given by (7) with the resetting mechanism
(8) and (9). Assume that the conditions of Theorem 4.1 are
satisfied. Then the transformed process (#,.) is L-mixing with
respect to (For, F5).

VI. THE ASYMPTOTIC COVARIANCE MATRIX

The asymptotic covariance matrix for Algorithm DFL, has
been rigorously derived in Chapter 4.5, Part I of [2] in a
series model, where the initial time tends to infinity. The
main advance of this section relative to the cited result is
that the asymptotic covariance matrix is obtained for a single
process, defined by Algorithm CR, with resetting. We need
the following condition:

Condirion 6.1: We assume that (H (s, 2%, w)) is asymp-
totically wide-sense stationary in the following sense:
there exists a zero-mean, wide-sense stationary process
(Hy(s,2*,w)) such that with some £ > 0.

ns = H(s,2*,w) — Ho(s, 2", w) = Oy (s 1 F),
There is no loss of generality to assume that

(T Ho) < Cy(1+7)71 7%

(26)

for all 7 = 0 with the same Cy, ¢, as for [T in Condition 3.1.
Denoting the auto-covariance matrix of Hy(s,z*,w) by
p(T), ie., setting

p(T) = E [Hy(s + 7,27, w)H{ (5,27, w)],

we define a basic quantity:

P = [m plr)dr.

—oo

27

It is ecasy to sec that the matrix P* is the asymptotic
covariance matrix of the arithmetic means

1 T
ﬁ/_THU(E.:r ,w)ds.

The value of the asymptotic covariance matrix can be
easily guessed, assuming the validity of (#,.,,)—(Z,) (in
a weak sense) under our set of conditions.

Theorem 6.1: Consider the continuous-time recursive es-
timation scheme given by (7) with the resetting mechanism
(8) and (9). Assume that the conditions of Theorem 4.1 are
satisfied and in addition ( H (s, ", w)) satisfies Condition 6.1.
Let A” be as defined in (12) Then the asymptotic covariance
matrix of the error process (x; — x*), defined by

§* = llim tE[(z; — %)z — 2*)7],
—00
exists and it satisfies the Lyapunov equation
(A" 4+ 1/2)8* + 5 (A* + /2T + P* =0. (28)
Also we have with some £, > 0

E[(z; — 2*)(z, — 2°)"] = %s* + O,
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For a stochastic Newton method, i.e. when A* = —J, we get
ST =P
VII. AN APPLICATION

The minimum-variance self-tuning regulator. The per-
formance degradation of the minimum-variance self-tuning
regulator were first rigorously studied in [30], [31] and [22].
In these papers the right order of magnitude for the so-
called cumulative regret was found for ARMAX systems,
and in [31] the asymptotic value of the normalized regret
was also found for ARX systems. We extend the latter result
to ARMAX systems.

Consider a stochastic control system in ARMAX(n, m, p)
representation defined by the relation

A'(g Yy =q "B (g Hu+C* (g Ve,

where A*(g~1). B*(¢~"), and C*(g~") are polynomials of
the backward shift operator g~ of degree n,m,p, respec-
tively. The minimum-variance control is given by (cf. [1])

(29)

u(t—1) = —(")" é(2), (30)
with
&t) = (—y(t=1),. .., —y(t—n), u(t=2),... u(t—m—1)),
and the optimal controller is

«_ 1. . & s aogs +
= b_”(ﬂl — . ...ap 7(:n:bl,‘..‘bm)T.
o
Let D  R™™™ be a set of feasible controller parameters to
be specified below. For any 71 € 1) and for £ = 0 we consider

the control law
u(t —1) = —" 6(t),

where @(t) is defined above. Thus we get a closed-loop
system with inputs and outputs

u(t) =a(t,n) and y(t) = gltn).

Let [7 denote the open set of #’s in E™¥™ such that the
closed-loop system is stable. Define

Gly) 2 Jim E [ S(t, n)u(t,m)]. @D

For 7 = 1* we have, modulo negligible errors, y(t, 77) = e(t),
and thus G(n*) = 0.

Let 7)(t) be the recursive estimator of 7* defined by
the self-tuning regulator, defined in [1], and modified by
a resetting mechanism, and let S* denote the asymptotic
covariance matrix of 7j(f); i.e., let

§7 = Jim £ [(i(r) 1) (t) —7")T].
The existence of S* is guaranteed by Theorem 6.1. Define
the second order sensitivity matrix
&2

FEN)

[n=n*

T = lim E (32)

ﬁg(f‘ﬁ):| :

324



2.2 — Migcarea oscilatorie armonica ideala

29

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006

CLAIM. Under appropriate technical conditions, obtained
by specializing the conditions of Theorem 4.2, we have
N

1
: 2oy L2 N=_ . qr
Jim ;(y (1) = €*(1)/log N = s Tr T*5*  (33)
almost surely. Moreover, we have
%’I& T*8* = o”(e)(m +n). (34)

The inequality (34) is an equality if and only if C* = 1 and
the updating of 11(t) is done by a stochastic Newton-method.
Remark. For a stochastic Newton-method we would need
the matrix R* = —G,,(n"). which had been believed to be
uncomputable prior to the work of Hjalmarsson:; cf. [24].
However, in [24] it has been shown that for certain inter-
esting physical systems G,(n*) is in fact computable.

VIII. CONCLUSION

Performance degradation due to statistical uncertainty,
also called regret, is of great interest in adaptive prediction
and control of stochastic systems. To quantify the pathwise
cumulative regret we need technical tools similar to those
developed in [16] in the context of adaptive prediction of
ARMA processes. These new tools have been developed in
this paper. The usefulness of the results in stochastic adaptive
control has been demonstrated for the minimum-variance
self-tuning regulator for ARMAX systems. A further appli-
cation for indirect adaptive control of multivariable linear
stochastic systems is given in [20].

The results can be also applied in the context of identifica-
tion for control; see [21]. A further potential area of applica-
tion is adaptive experimental design, see [19]. The extension
of the results of the present paper to Kiefer—Wolfwitz-type
procedures, such as the simultaneous perturbation stochastic
approximation, or SPSA, method due to Spall [35] seems to
be possible.
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